736 research outputs found

    Synthesis of Cobalt Nanowires on Porous Anodic Alumina Template Using Electrochemical Deposition

    Get PDF
    Electrochemical deposition has been widely used for synthesis of metal nanowires (NWs) on the porous template. In this paper, the effect of potential and electrolyte concentration on cobalt (Co) NWs formation through porous anodic alumina template has been investigated using direct-current electrodepostion at 0.75~2 V together with the high 0.5 M and low 0.1 M cobalt sulfurate based electrolyte. Scanning electron microscopy and grazing incidence X-ray diffraction were used to examine the nanostructure, morphology and phase of Co NWs. The current vs time curve was recorded for understanding the growth behavior. Too low potential of 0.75 V is not favored for Co NWs formation due to insufficient driving force while too high potential of 2 V ruins the NWs growth owing to hydrogen generation in reduction reaction. The uniform crystalline Co NWs can be obtained by the proper potential of 1V and concentration of 0.5 M at an average growth rate of 964 nm/min

    GATA-2 and GATA-3 regulate trophoblast-specific gene expression in vivo.

    Get PDF
    We previously demonstrated that the zinc finger transcription factors GATA-2 and GATA-3 are expressed in trophoblast giant cells and that they regulate transcription from the mouse placental lactogen I gene promoter in a transfected trophoblast cell line. We present evidence here that both of these factors regulate transcription of the placental lactogen I gene, as well as the related proliferin gene, in trophoblast giant cells in vivo. Placentas lacking GATA-3 accumulate placental lactogen I and proliferi

    High-throughput avian molecular sexing by SYBR green-based real-time PCR combined with melting curve analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combination of <it>CHD </it>(chromo-helicase-DNA binding protein)-specific polymerase chain reaction (PCR) with electrophoresis (PCR/electrophoresis) is the most common avian molecular sexing technique but it is lab-intensive and gel-required. Gender determination often fails when the difference in length between the PCR products of <it>CHD-Z </it>and <it>CHD-W </it>genes is too short to be resolved.</p> <p>Results</p> <p>Here, we are the first to introduce a PCR-melting curve analysis (PCR/MCA) to identify the gender of birds by genomic DNA, which is gel-free, quick, and inexpensive. <it>Spilornis cheela hoya </it>(<it>S. c. hoya</it>) and <it>Pycnonotus sinensis </it>(<it>P. sinensis</it>) were used to illustrate this novel molecular sexing technique. The difference in the length of <it>CHD </it>genes in <it>S. c. hoya </it>and <it>P. sinensis </it>is 13-, and 52-bp, respectively. Using Griffiths' P2/P8 primers, molecular sexing failed both in PCR/electrophoresis of <it>S. c. hoya </it>and in PCR/MCA of <it>S. c. hoya </it>and <it>P. sinensis</it>. In contrast, we redesigned sex-specific primers to yield 185- and 112-bp PCR products for the <it>CHD-Z </it>and <it>CHD-W </it>genes of <it>S. c. hoya</it>, respectively, using PCR/MCA. Using this specific primer set, at least 13 samples of <it>S. c. hoya </it>were examined simultaneously and the Tm peaks of <it>CHD-Z </it>and <it>CHD-W </it>PCR products were distinguished.</p> <p>Conclusion</p> <p>In this study, we introduced a high-throughput avian molecular sexing technique and successfully applied it to two species. This new method holds a great potential for use in high throughput sexing of other avian species, as well.</p

    Persistent Tissue Kinetics and Redistribution of Nanoparticles, Quantum Dot 705, in Mice: ICP-MS Quantitative Assessment

    Get PDF
    Background: Quantum dots (QDs) are autofluorescent semiconductor nanocrystals that can be used for in vivo biomedical imaging. However, we know little about their in vivo disposition and health consequences. Objectives: We assessed the tissue disposition and pharmacokinetics of QD705 in mice. Methods: We determined quantitatively the blood and tissue kinetics of QD705 in mice after single intravenous (iv) injection at the dose of 40 pmol for up to 28 days. Inductively coupled plasma–mass spectrometry (ICP-MS) measurement of cadmium was the primary method of quantification of QD705. Fluorescence light microscopy revealed the localization of QD705 in tissues. Results: Plasma half-life of QD705 in mice was short (18.5 hr), but ICP-MS analyses revealed QD705 persisted and even continued to increase in the spleen, liver, and kidney 28 days after an iv dose. Considerable time-dependent redistribution from body mass to liver and kidney was apparent between 1 and 28 days postdosing. The recoveries at both time points were near 100%; all QD705s reside in the body. Neither fecal nor urinary excretion of QD705 was detected appreciably in 28 days postdosing. Fluorescence microscopy demonstrated deposition of QD705 in the liver, spleen, and kidneys. Conclusion: Judging from the continued increase in the liver (29–42% of the administered dose), kidney (1.5–9.2%), and spleen (4.8–5.2%) between 1 and 28 days without any appreciable excretion, QD705 has a very long half-life, potentially weeks or even months, in the body and its health consequences deserve serious consideration

    Spin-dynamics simulations of the triangular antiferromagnetic XY model

    Full text link
    Using Monte Carlo and spin-dynamics methods, we have investigated the dynamic behavior of the classical, antiferromagnetic XY model on a triangular lattice with linear sizes L300L \leq 300. The temporal evolutions of spin configurations were obtained by solving numerically the coupled equations of motion for each spin using fourth-order Suzuki-Trotter decompositions of exponential operators. From space- and time-displaced spin-spin correlation functions and their space-time Fourier transforms we obtained the dynamic structure factor S(q,w)S({\bf q},w) for momentum q{\bf q} and frequency ω\omega. Below TKTT_{KT}(Kosterlitz-Thouless transition), both the in-plane (SxxS^{xx}) and the out-of-plane (SzzS^{zz}) components of S(q,ω)S({\bf q},\omega) exhibit very strong and sharp spin-wave peaks. Well above TKTT_{KT}, SxxS^{xx} and SzzS^{zz} apparently display a central peak, and spin-wave signatures are still seen in SzzS^{zz}. In addition, we also observed an almost dispersionless domain-wall peak at high ω\omega below TcT_{c}(Ising transition), where long-range order appears in the staggered chirality. Above TcT_{c}, the domain-wall peak disappears for all qq. The lineshape of these peaks is captured reasonably well by a Lorentzian form. Using a dynamic finite-size scaling theory, we determined the dynamic critical exponent zz = 1.002(3). We found that our results demonstrate the consistency of the dynamic finite-size scaling theory for the characteristic frequeny ωm\omega_{m} and the dynamic structure factor S(q,ω)S({\bf q},\omega) itself.Comment: 8 pages, RevTex, 10 figures, submitted to PR

    Endothelial miR-30c suppresses tumor growth via inhibition of TGF-β–induced Serpine1

    Get PDF
    In tumors, extravascular fibrin forms provisional scaffolds for endothelial cell (EC) growth and motility during angiogenesis. We report that fibrin-mediated angiogenesis was inhibited and tumor growth delayed following postnatal deletion of Tgfbr2 in the endothelium of Cdh5-CreERT2 Tgfbr2fl/fl mice (Tgfbr2iECKOmice). ECs from Tgfbr2iECKO mice failed to upregulate the fibrinolysis inhibitor plasminogen activator inhibitor 1 (Serpine1, also known as PAI-1), due in part to uncoupled TGF-β–mediated suppression of miR-30c. Bypassing TGF-β signaling with vascular tropic nanoparticles that deliver miR-30c antagomiRs promoted PAI-1–dependent tumor growth and increased fibrin abundance, whereas miR-30c mimics inhibited tumor growth and promoted vascular-directed fibrinolysis in vivo. Using single-cell RNA-Seq and a NanoString miRNA array, we also found that subtypes of ECs in tumors showed spectrums of Serpine1 and miR-30c expression levels, suggesting functional diversity in ECs at the level of individual cells; indeed, fresh EC isolates from lung and mammary tumor models had differential abilities to degrade fibrin and launch new vessel sprouts, a finding that was linked to their inverse expression patterns of miR-30c and Serpine1 (i.e., miR-30chi Serpine1lo ECs were poorly angiogenic and miR-30clo Serpine1hi ECs were highly angiogenic). Thus, by balancing Serpine1 expression in ECs downstream of TGF-β, miR-30c functions as a tumor suppressor in the tumor microenvironment through its ability to promote fibrin degradation and inhibit blood vessel formation

    Identification and phylogenetic analysis of orf virus from goats in Taiwan

    Get PDF
    An outbreak of contagious ecthyma in goats in central Taiwan was investigated. The disease was diagnosed by physical and histopathologic examinations, and the etiology of the disease was identified as orf virus by electron microscopy and polymerase chain reaction (PCR) and sequence of major envelope protein (B2L) gene. The entire protein-coding region of B2L gene were cloned and sequenced. Phylogenetic analysis of B2L amino acid sequences showed that the orf virus identified in this outbreak was closer to the Indian ORFV-Mukteswar 59/05 isolate. This is the first report on the molecular characterization of orf virus in Taiwan

    Making things happen : a model of proactive motivation

    Get PDF
    Being proactive is about making things happen, anticipating and preventing problems, and seizing opportunities. It involves self-initiated efforts to bring about change in the work environment and/or oneself to achieve a different future. The authors develop existing perspectives on this topic by identifying proactivity as a goal-driven process involving both the setting of a proactive goal (proactive goal generation) and striving to achieve that proactive goal (proactive goal striving). The authors identify a range of proactive goals that individuals can pursue in organizations. These vary on two dimensions: the future they aim to bring about (achieving a better personal fit within one’s work environment, improving the organization’s internal functioning, or enhancing the organization’s strategic fit with its environment) and whether the self or situation is being changed. The authors then identify “can do,” “reason to,” and “energized to” motivational states that prompt proactive goal generation and sustain goal striving. Can do motivation arises from perceptions of self-efficacy, control, and (low) cost. Reason to motivation relates to why someone is proactive, including reasons flowing from intrinsic, integrated, and identified motivation. Energized to motivation refers to activated positive affective states that prompt proactive goal processes. The authors suggest more distal antecedents, including individual differences (e.g., personality, values, knowledge and ability) as well as contextual variations in leadership, work design, and interpersonal climate, that influence the proactive motivational states and thereby boost or inhibit proactive goal processes. Finally, the authors summarize priorities for future researc

    The Dependence of the Superconducting Transition Temperature of Organic Molecular Crystals on Intrinsically Non-Magnetic Disorder: a Signature of either Unconventional Superconductivity or Novel Local Magnetic Moment Formation

    Get PDF
    We give a theoretical analysis of published experimental studies of the effects of impurities and disorder on the superconducting transition temperature, T_c, of the organic molecular crystals kappa-ET_2X and beta-ET_2X (where ET is bis(ethylenedithio)tetrathiafulvalene and X is an anion eg I_3). The Abrikosov-Gorkov (AG) formula describes the suppression of T_c both by magnetic impurities in singlet superconductors, including s-wave superconductors and by non-magnetic impurities in a non-s-wave superconductor. We show that various sources of disorder lead to the suppression of T_c as described by the AG formula. This is confirmed by the excellent fit to the data, the fact that these materials are in the clean limit and the excellent agreement between the value of the interlayer hopping integral, t_perp, calculated from this fit and the value of t_perp found from angular-dependant magnetoresistance and quantum oscillation experiments. If the disorder is, as seems most likely, non-magnetic then the pairing state cannot be s-wave. We show that the cooling rate dependence of the magnetisation is inconsistent with paramagnetic impurities. Triplet pairing is ruled out by several experiments. If the disorder is non-magnetic then this implies that l>=2, in which case Occam's razor suggests that d-wave pairing is realised. Given the proximity of these materials to an antiferromagnetic Mott transition, it is possible that the disorder leads to the formation of local magnetic moments via some novel mechanism. Thus we conclude that either kappa-ET_2X and beta-ET_2X are d-wave superconductors or else they display a novel mechanism for the formation of localised moments. We suggest systematic experiments to differentiate between these scenarios.Comment: 18 pages, 5 figure
    corecore