325 research outputs found
Study On Nanoparticles Of ZnSe Synthesized By Chemical Method And Their Characterization
The properties of semiconductor nanoparticles depend mainly on their shape and size due to high surface-to-volume ratio. The II – VI semiconductors have many applications such as, LED, acousto-optical effects and biological sensors. The ZnSe nanoparticles have wide-ranging applications in laser, optical instruments etc. because it has wide band gap and transmittance range, high luminescence efficiency, low absorption coefficient. In recent years, much attention was paid on the preparation methods, performances and applications of ZnSe nanoparticles and thin solid films, and a lot of important accomplishments have been obtained. In the present study ZnSe nanoparticles were successfully prepared by reacting Zn(CH3COO)2·2H2O and Na2SeSO3 at 343 K. The size of the crystallite was estimated by X-ray diffraction and TEM, whereas EDAX has confirmed of no foreign impurity inclusion in ZnSe nanoparticles. XRD shows the crystallite size of 5.68 nm and TEM gives a distribution ranging from 20 nm to 71 nm. A SEM image shows that the particles are spherical in a shape. Quantum confinement has resulted in the blue shift compared to bulk ZnSe as observed from the absorption spectra of particles dispersed in DMF. We obtained the photoluminescence spectra on these particles with two different excitation wavelength which shows broad band emission peak at 573 nm. Photoluminescence spectra taken with other excitation wavelength also gives sharp emission peaks at 484 nm, 530 nm, 551 nm and 600 nm.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/967
Studies on ZnO Nanorods Synthesized by Hydrothermal Method and their Characterization
ZnO nanorods, with a wide band gap of 3.37 eV have been attracting much attention due to its wide range of applications. Looking to this aspect in the present paper, ZnO nanorods were synthesized by hydrothermal method at 120 C for 2 hrs in an autoclave by using zinc acetate and sodium hydroxide as the starting materials. The final product obtained was then characterized by Energy Dispersive analysis of X-rays (EDAX), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and Raman Spectroscopy. X-ray diffraction and Raman spectra showed that ZnO nanorods are belonging to wurtzite structure without any impurity phases. The ZnO nanorods shows polycrystalline behaviour as observed from SAED pattern and the calculated lattice parameters from this pattern which matches with the XRD results.The optical properties of the ZnO nanorods were then further studied with the help of absorption, photoluminescence (PL) and FTIR spectra. The optical energy band gap determined from the absorption spectra comes about 3.33 eV. In the photoluminescence spectra of ZnO nanorods the UV emission appears at 380 nm and strong blue emission appears at 445 nm. FTIR spectra indicate the existence of distinct characteristic absorption peak at 520 cm – 1 for ZnO stretching modes. The potential toxicity of nanosized ZnO nanorods were investigated using Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Serratia marceseus and Proteus vulgaris bacteria as test organism.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3560
Higgs-Boson Production Induced by Bottom Quarks
Bottom quark-induced processes are responsible for a large fraction of the
LHC discovery potential, in particular for supersymmetric Higgs bosons.
Recently, the discrepancy between exclusive and inclusive Higgs boson
production rates has been linked to the choice of an appropriate bottom
factorization scale. We investigate the process kinematics at hadron colliders
and show that it leads to a considerable decrease in the bottom factorization
scale. This effect is the missing piece needed to understand the corresponding
higher order results. Our results hold generally for charged and for neutral
Higgs boson production at the LHC as well as at the Tevatron. The situation is
different for single top quark production, where we find no sizeable
suppression of the factorization scale. Turning the argument around, we can
specify how large the collinear logarithms are, which can be resummed using the
bottom parton picture.Comment: 18 page
in the Standard Model with Flavor Symmetry
The observed branching ratios for decays are much larger than
factorization predictions in the Standard Model (SM). Many proposals have been
made to reconcile the data and theoretical predictions. In this paper we study
these decays within the SM using flavor U(3) symmetry. If small annihilation
amplitudes are neglected, one needs 11 hadronic parameters to describe decays where can be one of the , , and nonet
mesons. We find that existing data are consistent with SM with flavor U(3)
symmetry. We also predict several measurable branching ratios and CP
asymmetries for , decays.
Near future experiments can provide important tests for the Standard Model with
flavor U(3) symmetry.Comment: 13 pages, 4 table
Electroweak Corrections to the Charged Higgs Boson Decay into Chargino and Neutralino
The electroweak corrections to the partial widths of the decays including one-loop
diagrams of the third generation quarks and squarks, are investigated within
the Supersymmetric Standard Model. The relative corrections can reach the
values about 10%, therefore they should be taken into account for the precise
experimental measurement at future colliders.Comment: 21 pages, 6 eps figures, 1 Latex fil
Charged Higgs Boson Production in Bottom-Gluon Fusion
We compute the complete next-to-leading order SUSY-QCD corrections for the
associated production of a charged Higgs boson with a top quark via
bottom-gluon fusion. We investigate the applicability of the bottom parton
description in detail. The higher order corrections can be split into real and
virtual corrections for a general two Higgs doublet model and into additional
massive supersymmetric loop contributions. We find that the perturbative
behavior is well under control. The supersymmetric contributions consist of the
universal bottom Yukawa coupling corrections and non-factorizable diagrams.
Over most of the relevant supersymmetric parameter space the Yukawa coupling
corrections are sizeable, while the remaining supersymmetric loop contributions
are negligible.Comment: 18 pages, v2: some discussions added, v3: published versio
Recommended from our members
Measurement of Bottom versus Charm as a Function of Transverse Momentum with Electron-Hadron Correlations in p+p Collisions at sqrt(s)=200 GeV
The momentum distribution of electrons from semi-leptonic decays of charm and
bottom for mid-rapidity |y|<0.35 in p+p collisions at sqrt(s)=200 GeV is
measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC)
over the transverse momentum range 2 < p_T < 7 GeV/c. The ratio of the yield of
electrons from bottom to that from charm is presented. The ratio is determined
using partial D/D^bar --> e^{+/-} K^{-/+} X (K unidentified) reconstruction. It
is found that the yield of electrons from bottom becomes significant above 4
GeV/c in p_T. A fixed-order-plus-next-to-leading-log (FONLL) perturbative
quantum chromodynamics (pQCD) calculation agrees with the data within the
theoretical and experimental uncertainties. The extracted total bottom
production cross section at this energy is \sigma_{b\b^bar}= 3.2
^{+1.2}_{-1.1}(stat) ^{+1.4}_{-1.3}(syst) micro b.Comment: 432 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Proximity effect at superconducting Sn-Bi2Se3 interface
We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions
down to 250 mK and in different magnetic fields. A number of conductance
anomalies were observed below the superconducting transition temperature of Sn,
including a small gap different from that of Sn, and a zero-bias conductance
peak growing up at lower temperatures. We discussed the possible origins of the
smaller gap and the zero-bias conductance peak. These phenomena support that a
proximity-effect-induced chiral superconducting phase is formed at the
interface between the superconducting Sn and the strong spin-orbit coupling
material Bi2Se3.Comment: 7 pages, 8 figure
Heavy Quarks and Heavy Quarkonia as Tests of Thermalization
We present here a brief summary of new results on heavy quarks and heavy
quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma
Thermalization" Workshop in Vienna, Austria in August 2005, directly following
the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop
(Vienna August 2005) Proceeding
Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV
PHENIX has measured the centrality dependence of charged hadron p_T spectra
from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T
decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction
of the contribution from hard scattering to high p_T hadron production. For
central collisions the yield at high p_T is shown to be suppressed compared to
binary nucleon-nucleon collision scaling of p+p data. This suppression is
monotonically increasing with centrality, but most of the change occurs below
30% centrality, i.e. for collisions with less than about 140 participating
nucleons. The observed p_T and centrality dependence is consistent with the
particle production predicted by models including hard scattering and
subsequent energy loss of the scattered partons in the dense matter created in
the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to
Phys. Lett. B. Revised to address referee concerns. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are publicly available at
http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm
- …