1,123 research outputs found
Формування субрегіонів як напрям підвищення конкурентоспроможності та інвестиційної активності території
Характерною особливістю регіону є виконання ним не тільки
економічних, а й соціальних функцій. Саме тут криється принципова відмінність між різними ланками
відтворювального процесу. Кінцева мета відтворювального процесу регіону – матеріальний добробут
населення, покращення навколишнього середовища, створення нормальних умов для праці й відпочинку,
можливостей духовного розвитку особи і т. п
Computational study of the dissociation reactions of secondary ozonide
This contribution presents a comprehensive computational study on the reactions of secondary ozonide (SOZ) with ammonia and water molecules. The mechanisms were studied in both a vacuum and the aqueous medium. All the molecular geometries were optimized using the B3LYP functional in conjunction with several basis sets. M06-2X, APFD, and ωB97XD functionals with the full basis set were also used. In addition, single-point energy calculations were performed with the G4MP2 and G3MP2 methods. Five different mechanistic pathways were studied for the reaction of SOZ with ammonia and water molecules. The most plausible mechanism for the reaction of SOZ with ammonia yields HC(O)OH, NH3, and HCHO as products, with ammonia herein acting as a mediator. This pathway is exothermic and exergonic, with an overall barrier height of only 157 kJ mol−1 using the G3MP2 method. All the reaction pathways between SOZ and water molecules are endothermic and endergonic reactions. The most likely reaction pathway for the reaction of SOZ with water involves a water dimer, in which the second water molecule acts as a mediator, with an overall barrier height of only 135 kJ mol−1 using the G3MP2 method. Solvent effects were found to incur a significant reduction in activation energies. When the second H2O molecule acts as a mediator in the reaction of SOZ with water, the barrier height of the rate-determining step state decreases significantly
Association and interaction analyses of eight genes under asthma linkage peaks
Background: Linkage studies have implicated the 2q33, 9p21, 11q13 and 20q13 regions in the regulation of allergic disease. The aim of this study was to test genetic variants in candidate genes from these regions for association with specific asthma traits. Methods: Ninety-five single nucleotide polymorphisms (SNP) located in eight genes (CD28, CTLA4, ICOS, ADAM23, ADAMTSL1, MS4A2, CDH26 and HRH3) were genotyped in >5000 individuals from Australian (n = 1162), Dutch (n = 99) and Danish (n = 303) families. Traits tested included doctor-diagnosed asthma, atopy, airway obstruction, total serum immunoglobulin (Ig) E levels and eosinophilia. Association was tested using both multivariate and univariate methods, with gene-wide thresholds for significance determined through simulation. Gene-by-gene and gene-by-environment analyses were also performed. Results: There was no overall evidence for association with seven of the eight genes tested when considering all genetic variation assayed in each gene. The exception was MS4A2 on chromosome 11q13, which showed weak evidence for association with IgE (gene-wide P < 0.05, rs502581). There were no significant gene-by-gene or gene-by-environment interaction effects after accounting for the number of tests performed. Conclusions: The individual variants genotyped in the 2q33, 9p21 and 20q13 regions do not explain a large fraction of the variation in the quantitative traits tested or have a major impact on asthma or atopy risk. Our results are consistent with a weak effect of MS4A2 polymorphisms on the variation of total IgE levels. © 2009 John Wiley & Sons A/S
Triggering an eruptive flare by emerging flux in a solar active-region complex
A flare and fast coronal mass ejection originated between solar active
regions NOAA 11514 and 11515 on July 1, 2012 in response to flux emergence in
front of the leading sunspot of the trailing region 11515. Analyzing the
evolution of the photospheric magnetic flux and the coronal structure, we find
that the flux emergence triggered the eruption by interaction with overlying
flux in a non-standard way. The new flux neither had the opposite orientation
nor a location near the polarity inversion line, which are favorable for strong
reconnection with the arcade flux under which it emerged. Moreover, its flux
content remained significantly smaller than that of the arcade (approximately
40 %). However, a loop system rooted in the trailing active region ran in part
under the arcade between the active regions, passing over the site of flux
emergence. The reconnection with the emerging flux, leading to a series of jet
emissions into the loop system, caused a strong but confined rise of the loop
system. This lifted the arcade between the two active regions, weakening its
downward tension force and thus destabilizing the considerably sheared flux
under the arcade. The complex event was also associated with supporting
precursor activity in an enhanced network near the active regions, acting on
the large-scale overlying flux, and with two simultaneous confined flares
within the active regions.Comment: Accepted for publication in Topical Issue of Solar Physics: Solar and
Stellar Flares. 25 pages, 12 figure
Spin-Glass State in
Magnetic susceptibility, magnetization, specific heat and positive muon spin
relaxation (\musr) measurements have been used to characterize the magnetic
ground-state of the spinel compound . We observe a spin-glass
transition of the S=1/2 spins below characterized
by a cusp in the susceptibility curve which suppressed when a magnetic field is
applied. We show that the magnetization of depends on the
magnetic histo Well below , the muon signal resembles the dynamical
Kubo-Toyabe expression reflecting that the spin freezing process in results Gaussian distribution of the magnetic moments. By means of
Monte-Carlo simulati we obtain the relevant exchange integrals between the spins in this compound.Comment: 6 pages, 16 figure
Probiotic-Based bacteriocin: Immunity supplementation against viruses. An updated review
Viral infections are a major cause of severe, fatal diseases worldwide. Recently, these infections have increased due to demanding contextual circumstances, such as environmental changes, increased migration of people and product distribution, rapid demographic changes, and outbreaks of novel viruses, including the COVID-19 outbreak. Internal variables that influence viral immunity have received attention along with these external causes to avert such novel viral outbreaks. The gastrointestinal microbiome (GIM), particularly the present probiotics, plays a vital role in the host immune system by mediating host protective immunity and acting as an immune regulator. Bacteriocins possess numerous health benefits and exhibit antagonistic activity against enteric pathogens and immunobiotics, thereby inhibiting viral infections. Moreover, disrupting the homeostasis of the GIM/host immune system negatively affects viral immunity. The interactions between bacteriocins and infectious viruses, particularly in COVID-19, through improved host immunity and physiology are complex and have not yet been studied, although several studies have proven that bacteriocins influence the outcomes of viral infections. However, the complex transmission to the affected sites and siRNA defense against nuclease digestion lead to challenging clinical trials. Additionally, bacteriocins are well known for their biofunctional properties and underlying mechanisms in the treatment of bacterial and fungal infections. However, few studies have shown the role of probiotics-derived bacteriocin against viral infections. Thus, based on the results of the previous studies, this review lays out a road map for future studies on bacteriocins for treating viral infections
Three-body non-additive forces between spin-polarized alkali atoms
Three-body non-additive forces in systems of three spin-polarized alkali
atoms (Li, Na, K, Rb and Cs) are investigated using high-level ab initio
calculations. The non-additive forces are found to be large, especially near
the equilateral equilibrium geometries. For Li, they increase the three-atom
potential well depth by a factor of 4 and reduce the equilibrium interatomic
distance by 0.9 A. The non-additive forces originate principally from chemical
bonding arising from sp mixing effects.Comment: 4 pages, 3 figures (in 5 files
Solar Intranetwork Magnetic Elements: bipolar flux appearance
The current study aims to quantify characteristic features of bipolar flux
appearance of solar intranetwork (IN) magnetic elements. To attack such a
problem, we use the Narrow-band Filter Imager (NFI) magnetograms from the Solar
Optical Telescope (SOT) on board \emph{Hinode}; these data are from quiet and
an enhanced network areas. Cluster emergence of mixed polarities and IN
ephemeral regions (ERs) are the most conspicuous forms of bipolar flux
appearance within the network. Each of the clusters is characterized by a few
well-developed ERs that are partially or fully co-aligned in magnetic axis
orientation. On average, the sampled IN ERs have total maximum unsigned flux of
several 10^{17} Mx, separation of 3-4 arcsec, and a lifetime of 10-15 minutes.
The smallest IN ERs have a maximum unsigned flux of several 10^{16} Mx,
separations less than 1 arcsec, and lifetimes as short as 5 minutes. Most IN
ERs exhibit a rotation of their magnetic axis of more than 10 degrees during
flux emergence. Peculiar flux appearance, e.g., bipole shrinkage followed by
growth or the reverse, is not unusual. A few examples show repeated
shrinkage-growth or growth-shrinkage, like magnetic floats in the dynamic
photosphere. The observed bipolar behavior seems to carry rich information on
magneto-convection in the sub-photospheric layer.Comment: 26 pages, 14 figure
- …