208 research outputs found
Green Synthesis of Magnetite Nanoparticles (via Thermal Decomposition Method) with Controllable Size and Shape
Magnetite (Fe3O4) nanoparticles with controllable size and shape were synthesized by the thermal decomposition method. In contrast to previously reported thermal decomposition methods, our synthesis method had utilized a much cheaper and less toxic iron precursor, iron acetylacetonate (Fe(acac)3), and environmentally benign and non-toxic polyethylene oxide (PEO) was being used as the solvent and surfactant simultaneously. Fe3O4 nanoparticles of controllable size and shape were prepared by manipulating the synthesis parameters such as precursor concentrations, reaction durations and surfactants
Genetic diversity of Neolamarckia cadamba using dominant DNA markers based on inter-simple sequence repeats (ISSRs) in Sarawak
Neolamarckia cadamba or commonly known as kelampayan has been selected as one of the important plantation
tree species in Malaysia. Thus, the molecular characterization of this indigenous tropical tree species is needed to
maintain its high quality. Inter simple sequence repeats (ISSR) markers were used in this study to determine the
genetic diversity and relatedness of N. cadamba in two planted forests and six natural forests in Sarawak. Three
ISSR primers had generated atotal of 239 loci, of which 32.6% - 59.4% of the loci were polymorphic among236N.
cadamba treesin eight populations. The mean Shannon’s diversity index (I)ranged from 0.1399 to 0.2354. The
coefficient of population differentiation was low for planted forests (Gst = 0.0871) and natural forests (Gst =
0.2013`). Both UPGMA dendrogram and NJ-tree generated by ISSR markers had divided natural forests and
planted forests into two distinct clusters. Natural forests were grouped in one cluster while planted forests were
grouped in another cluster. This study shows that N. cadamba trees are closely related within its own population
and its designated forest type. In future, several specific loci can be sequenced and developed into SCAR (sequence
characterized amplification region) markers for tree improvement and conservation programme of N. cadamba
Ground-State Dynamical Correlation Functions: An Approach from Density Matrix Renormalization Group Method
A numerical approach to ground-state dynamical correlation functions from
Density Matrix Renormalization Group (DMRG) is developed. Using sum rules,
moments of a dynamic correlation function can be calculated with DMRG, and with
the moments the dynamic correlation function can be obtained by the maximum
entropy method. We apply this method to one-dimensional spinless fermion
system, which can be converted to the spin 1/2 Heisenberg model in a special
case. The dynamical density-density correlation function is obtained.Comment: 11 pages, latex, 4 figure
A Lifshitz Black Hole in Four Dimensional R^2 Gravity
We consider a higher derivative gravity theory in four dimensions with a
negative cosmological constant and show that vacuum solutions of both Lifshitz
type and Schr\"{o}dinger type with arbitrary dynamical exponent z exist in this
system. Then we find an analytic black hole solution which asymptotes to the
vacuum Lifshitz solution with z=3/2 at a specific value of the coupling
constant. We analyze the thermodynamic behavior of this black hole and find
that the black hole has zero entropy while non-zero temperature, which is very
similar to the case of BTZ black holes in new massive gravity at a specific
coupling. In addition, we find that the three dimensional Lifshitz black hole
recently found by E. Ayon-Beato et al. has a negative entropy and mass when the
Newton constant is taken to be positive.Comment: 11 pages, no figure; v2, a minor error correcte
Some No-go Theorems for String Duals of Non-relativistic Lifshitz-like Theories
We study possibilities of string theory embeddings of the gravity duals for
non-relativistic Lifshitz-like theories with anisotropic scale invariance. We
search classical solutions in type IIA and eleven-dimensional supergravities
which are expected to be dual to (2+1)-dimensional Lifshitz-like theories.
Under reasonable ansaetze, we prove that such gravity duals in the
supergravities are not possible. We also discuss a possible physical reason
behind this.Comment: 18 pages, Latex, flux conditions clarified (v2), brief summary of
results added (v3
Star clusters near and far; tracing star formation across cosmic time
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00690-x.Star clusters are fundamental units of stellar feedback and unique tracers of their host galactic properties. In this review, we will first focus on their constituents, i.e.\ detailed insight into their stellar populations and their surrounding ionised, warm, neutral, and molecular gas. We, then, move beyond the Local Group to review star cluster populations at various evolutionary stages, and in diverse galactic environmental conditions accessible in the local Universe. At high redshift, where conditions for cluster formation and evolution are more extreme, we are only able to observe the integrated light of a handful of objects that we believe will become globular clusters. We therefore discuss how numerical and analytical methods, informed by the observed properties of cluster populations in the local Universe, are used to develop sophisticated simulations potentially capable of disentangling the genetic map of galaxy formation and assembly that is carried by globular cluster populations.Peer reviewedFinal Accepted Versio
Erratum: Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017
Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning
A MODEST review
We present an account of the state of the art in the fields explored by the
research community invested in 'Modeling and Observing DEnse STellar systems'.
For this purpose, we take as a basis the activities of the MODEST-17
conference, which was held at Charles University, Prague, in September 2017.
Reviewed topics include recent advances in fundamental stellar dynamics,
numerical methods for the solution of the gravitational N-body problem,
formation and evolution of young and old star clusters and galactic nuclei,
their elusive stellar populations, planetary systems, and exotic compact
objects, with timely attention to black holes of different classes of mass and
their role as sources of gravitational waves.
Such a breadth of topics reflects the growing role played by collisional
stellar dynamics in numerous areas of modern astrophysics. Indeed, in the next
decade, many revolutionary instruments will enable the derivation of positions
and velocities of individual stars in the Milky Way and its satellites and will
detect signals from a range of astrophysical sources in different portions of
the electromagnetic and gravitational spectrum, with an unprecedented
sensitivity. On the one hand, this wealth of data will allow us to address a
number of long-standing open questions in star cluster studies; on the other
hand, many unexpected properties of these systems will come to light,
stimulating further progress of our understanding of their formation and
evolution.Comment: 42 pages; accepted for publication in 'Computational Astrophysics and
Cosmology'. We are much grateful to the organisers of the MODEST-17
conference (Charles University, Prague, September 2017). We acknowledge the
input provided by all MODEST-17 participants, and, more generally, by the
members of the MODEST communit
Observation of quantum entanglement with top quarks at the ATLAS detector
Entanglement is a key feature of quantum mechanics with applications in fields such as metrology, cryptography, quantum information and quantum computation. It has been observed in a wide variety of systems and length scales, ranging from the microscopic to the macroscopic. However, entanglement remains largely unexplored at the highest accessible energy scales. Here we report the highest-energy observation of entanglement, in top–antitop quark events produced at the Large Hadron Collider, using a proton–proton collision dataset with a centre-of-mass energy of √s = 13 TeV and an integrated luminosity of 140 inverse femtobarns (fb)−1 recorded with the ATLAS experiment. Spin entanglement is detected from the measurement of a single observable D, inferred from the angle between the charged leptons in their parent top- and antitop-quark rest frames. The observable is measured in a narrow interval around the top–antitop quark production threshold, at which the entanglement detection is expected to be significant. It is reported in a fiducial phase space defined with stable particles to minimize the uncertainties that stem from the limitations of the Monte Carlo event generators and the parton shower model in modelling top-quark pair production. The entanglement marker is measured to be D = −0.537 ± 0.002 (stat.) ± 0.019 (syst.) for 340 GeV < mtt < 380 GeV. The observed result is more than five standard deviations from a scenario without entanglement and hence constitutes the first observation of entanglement in a pair of quarks and the highest-energy observation of entanglement so far
- …