31 research outputs found

    Rotating Black Holes which Saturate a Bogomol'nyi Bound

    Get PDF
    We construct and study the electrically charged, rotating black hole solution in heterotic string theory compactified on a (10−D)(10-D) dimensional torus. This black hole is characterized by its mass, angular momentum, and a (36−2D)(36-2D) dimensional electric charge vector. One of the novel features of this solution is that for D>5D >5, its extremal limit saturates the Bogomol'nyi bound. This is in contrast with the D=4D=4 case where the rotating black hole solution develops a naked singularity before the Bogomol'nyi bound is reached. The extremal black holes can be superposed, and by taking a periodic array in D>5D>5, one obtains effectively four dimensional solutions without naked singularities.Comment: 13 pages, no figure

    Topology, Entropy and Witten Index of Dilaton Black Holes

    Full text link
    We have found that for extreme dilaton black holes an inner boundary must be introduced in addition to the outer boundary to give an integer value to the Euler number. The resulting manifolds have (if one identifies imaginary time) topology S1×R×S2S^1 \times R \times S^2 and Euler number χ=0\chi = 0 in contrast to the non-extreme case with χ=2\chi=2. The entropy of extreme U(1)U(1) dilaton black holes is already known to be zero. We include a review of some recent ideas due to Hawking on the Reissner-Nordstr\"om case. By regarding all extreme black holes as having an inner boundary, we conclude that the entropy of {\sl all} extreme black holes, including [U(1)]2[U(1)]^2 black holes, vanishes. We discuss the relevance of this to the vanishing of quantum corrections and the idea that the functional integral for extreme holes gives a Witten Index. We have studied also the topology of ``moduli space'' of multi black holes. The quantum mechanics on black hole moduli spaces is expected to be supersymmetric despite the fact that they are not HyperK\"ahler since the corresponding geometry has torsion unlike the BPS monopole case. Finally, we describe the possibility of extreme black hole fission for states with an energy gap. The energy released, as a proportion of the initial rest mass, during the decay of an electro-magnetic black hole is 300 times greater than that released by the fission of an 235U{}^{235} U nucleus.Comment: 51 pages, 4 figures, LaTeX. Considerably extended version. New sections include discussion of the Witten index, topology of the moduli space, black hole sigma model, and black hole fission with huge energy releas
    corecore