16 research outputs found

    The effect of work pace on workload, motor variability and fatigue during simulated light assembly work

    Get PDF
    This study investigated the effect of work pace on workload, motor variability and fatigue during light assembly work. Upper extremity kinematics and electromyography (EMG) were obtained on a cycle-to-cycle basis for eight participants during two conditions, corresponding to "normal" and "high" work pace according to a predetermined time system for engineering. Indicators of fatigue, pain sensitivity and performance were recorded before, during and after the task. The level and variability of muscle activity did not differ according to work pace, and manifestations of muscle fatigue or changed pain sensitivity were not observed. In the high work pace, however, participants moved more efficiently, they showed more variability in wrist speed and acceleration, but they also made more errors. These results suggest that an increased work pace, within the range addressed here, will not have any substantial adverse effects on acute motor performance and fatigue in light, cyclic assembly work. © 2011 Taylor & Francis

    An evaluation of methods assessing the physical demands of manual lifting in scaffolding

    No full text
    Four methods assessing the physical demands of manual lifting were compared. The scaffolding job was evaluated and three distinct scaffolding tasks were ranked using: (1) the revised NIOSH lifting equation (NIOSH method), (2) lifting guidelines for the Dutch construction industry (Arbouw method), (3) rapid appraisal of the NIOSH lifting equation (practitioners' method), and (4) systematic observations. For the three first-mentioned methods the same dataset was used; observation took place in a different setting in the same company. At job level, all methods indicated that ergonomic interventions are required to protect scaffolders from an increased risk for low back pain. The NIOSH, Arbouw and practitioners' method resulted in a similar ranking order of tasks (transport>construction>dismantlement). In contrast, the observational method gave transport the lowest ranking. The underlying cause was probably that the observational method is more sensitive to durations of tasks and lifting within tasks than the three other method

    Interventions to reduce sedentary behavior and increase physical activity during productive work: a systematic review.

    No full text
    Objective This review addresses the effectiveness of workplace interventions that are implemented during productive work and are intended to change workers` SB and/or PA. Methods We searched Scopus for articles published from 1992 until 12 March 2015. Relevant studies were evaluated using the Quality Assessment Tool for Quantitative Studies and summarized in a best-evidence synthesis. Primary outcomes were SB and PA, both at work and overall (ie, during the whole day); work performance and health-related parameters were secondary outcomes. Results The review included 40 studies describing 41 interventions organized into three categories: alternative workstations (20), interventions promoting stair use (11), and personalized behavioral interventions (10). Alternative workstations were found to decrease overall SB (strong evidence; even for treadmills separately); interventions promoting stair use were found to increase PA at work while personalized behavioral interventions increased overall PA (both with moderate evidence). There was moderate evidence to show alternative workstations influenced neither hemodynamics nor cardiorespiratory fitness and personalized behavioral interventions did not influence anthropometric measures. Evidence was either insufficient or conflicting for intervention effects on work performance and lipid and metabolic profiles. Conclusions Current evidence suggests that some of the reviewed workplace interventions that are compatible with productive work indeed have positive effects on SB or PA at work. In addition, some of the interventions were found to influence overall SB or PA positively. Putative long-term effects remain to be established. (aut. ref.

    Group-based measurement strategie explored by bootstrapping

    No full text
    The precision of mean exposure to pushing was examined in 2 occupational groups using various combinations of the number of workers and measurements per worker. The frequency and duration of pushing of the 2 occupational groups was assessed using onsite observation. All data were divided into successive periods of 30 minutes of observation. The precision of the group mean exposure to pushing was expressed by 90% confidence intervals obtained by bootstrapping. The effect on the confidence interval of varying numbers of workers and numbers of periods per worker was examined. For both occupational groups there was little precision to be gained when >10 workers were observed. Within the maximum number of workers used in the bootstrap simulations, it appeared that, beyond 10 workers, the confidence intervals decreased by <5% for every worker that was added, when each worker was observed at least 8 periods of 30 minutes. If workers were observed exactly 4 periods of 30 minutes per worker, an additional 4 workers were required to compensate for the loss of precision. An unbalanced strategy with approximately 8 periods of 30 minutes per worker hardly decreased the precision of the group mean, however. The precision of the group-based mean exposure to pushing is influenced by the number of workers observed and by the number of repeated measurements per worker. In the planning of measurement strategies, it is advisable to account for possible sources of variance in advance and to assess the exposure variabilit

    Influence of posture variation on shoulder muscle activity, heart rate, and perceived exertion in a repetitive manual task

    No full text
    OCCUPATIONAL    APPLICATIONS In repetitive work, more physical variation is believed to reduce the risk of eventually developing musculoskeletal disorders. We investigated the extent to which workstation designs leading to more variation in upper arm postures during a pick-and-place task influenced outcomes of relevance to musculoskeletal disorder risk, including muscle activity, cardiovascular response, and perceived exertion, measured through the maximal acceptable work pace. Posture variation to the extent obtained in our experiment had only minor effects on these outcomes, and considerably less impact than a moderate change in working height. Apparently, substantial manipulations of the workstation or of the work task will be needed to accomplish variation to an extent that can significantly change outcomes of relevance to occupational musculoskeletal disorders and, thus, represent a potential for reduction in musculoskeletal disorder risk. TECHNICAL ABSTRACT Background: Repetitive light assembly work is associated with an increased risk for developing work-related musculoskeletal disorders. More exposure variation, for instance by redesigning the workstation, has been proposed as an effective intervention. Purpose: We investigated the effect of upper arm posture variation in a 1-hour repetitive pick-and-place task on shoulder muscle activity, heart rate, and perceived exertion, measured on the Borg CR-10 scale and in terms of maximal acceptable work pace (MAWP). Methods: Thirteen healthy participants performed the task in three workstation designs where the hand was moved either horizontally (H30/30), diagonally (D20/40), or vertically (V10/50), with a mean upper arm elevation of ∼30°. In a fourth design, the hand was moved horizontally at ∼50° mean arm elevation (H50/50). Results: As intended, upper arm posture variation, measured by the upper arm elevation standard deviation and range of motion, differed between H30/30, D20/40, and V10/50. However, MAWP (10.7 cycles·min−1 on average across conditions; determined using a psychophysical approach), mean upper trapezius activity (54% reference voluntary exertion [RVE]), and heart rate (69 bpm) did not differ between these workstation designs. In H50/50, MAWP was lower (9.3 cycles·min−1), while trapezius activity (78% RVE) and perceived exertion (Borg CR-10) tended to be higher. Conclusions: Our results indicate that posture variation to the extent achieved in the current experiment leads to less effects on muscle activity and perceived exertion than a moderate change in working height
    corecore