330 research outputs found
Low energy electron attachment to cyanamide (NH2CN)
Cyanamide (NH2CN) is a molecule relevant for interstellar chemistry and the chemical evolution of life. In the present investigation, dissociative electron attachment to NH2CN has been studied in a crossed electronmolecular beams experiment in the electron energy range from about 0 eV to 14 eV. The following anionic species were detected: NHCN-, NCN-, CN-, NH2-, NH-, and CH2-. The anion formation proceeds within two broad electron energy regions, one between about 0.5 and 4.5 eV and a second between 4.5 and 12 eV. A discussion of possible reaction channels for all measured negative ions is provided. The experimental results are compared with calculations of the thermochemical thresholds of the anions observed. For the dehydrogenated parent anion, we explain the deviation between the experimental appearance energy of the anion with the calculated corresponding reaction threshold by electron attachment to the isomeric form of NH2CN-carbodiimide(VLID)1020340Accepted versio
Electron neutrino tagging through tertiary lepton detection
We discuss an experimental technique aimed at tagging electron neutrinos in
multi-GeV artificial sources on an event-by-event basis. It exploits in a novel
manner calorimetric and tracking technologies developed in the framework of the
LHC experiments and of rare kaon decay searches. The setup is suited for
slow-extraction, moderate power beams and it is based on an instrumented decay
tunnel equipped with tagging units that intercept secondary and tertiary
leptons from the bulk of undecayed \pi^+ and protons. We show that the taggers
are able to reduce the \nue contamination originating from K_e3 decays by about
one order of magnitude. Only a limited suppression (~60%) is achieved for \nue
produced by the decay-in-flight of muons; for low beam powers, similar
performance as for K_e3 can be reached supplementing the tagging system with an
instrumented beam dump.Comment: 19 pages, 7 figures; minor changes, version to appear in EPJ
Pforams@microtax : Anew online taxonomic database for planktonic foraminifera
A new relational taxonomic database for planktonic foraminifera (\u201cpforams@mikrotax\u201d) has been constructed and is now
freely available online at http://www.mikrotax.org. It represents amajor advance from its predecessor, the CHRONOS online taxonomic
database, which has served the research community since 2005. The benefits of the new database to the research and industrial
biostratigraphic communities are many, as it will serve as an immediately accessible taxonomic guide and reference for specialists and
non-specialists alike by providing access to a wealth of information and images from original authors and from expertswho have inserted
recent authoritative updates to planktonic foraminiferal taxonomy, phylogeny and biostratigraphy. The database will be continually updated and used as a guide for training current and future generations of students and professionals who will be able to self-educate on
planktonic foraminiferal taxonomy and biostratigraphy. Further investigation of species traditionally included in the Cretaceous genera
Heterohelix, Globigerinelloides, Marginotruncana, and Globotruncana is required to exclude the use of polyphyletic morphotaxa. The
taxonomy for Paleogene planktonic foraminifera is quite stable following publication of the Paleocene, Eocene, and Oligocene taxonomic
atlases, but revisions to the taxonomy and phylogeny of Neogene taxa are needed to incorporate results from genetic sequencing
studies and recent biostratigraphic observations
Spin fluctuations in the quasi-two dimensional Heisenberg ferromagnet GdI_2 studied by Electron Spin Resonance
The spin dynamics of GdI_2 have been investigated by ESR spectroscopy. The
temperature dependences of the resonance field and ESR intensity are well
described by the model for the spin susceptibility proposed by Eremin et al.
[Phys. Rev. B 64, 064425 (2001)]. The temperature dependence of the resonance
linewidth shows a maximum similar to the electrical resistance and is discussed
in terms of scattering processes between conduction electrons and localized
spins.Comment: to be published in PR
Asteroseismology of Eclipsing Binary Stars in the Kepler Era
Eclipsing binary stars have long served as benchmark systems to measure
fundamental stellar properties. In the past few decades, asteroseismology - the
study of stellar pulsations - has emerged as a new powerful tool to study the
structure and evolution of stars across the HR diagram. Pulsating stars in
eclipsing binary systems are particularly valuable since fundamental properties
(such as radii and masses) can determined using two independent techniques.
Furthermore, independently measured properties from binary orbits can be used
to improve asteroseismic modeling for pulsating stars in which mode
identifications are not straightforward. This contribution provides a review of
asteroseismic detections in eclipsing binary stars, with a focus on space-based
missions such as CoRoT and Kepler, and empirical tests of asteroseismic scaling
relations for stochastic ("solar-like") oscillations.Comment: 28 pages, 12 figures, 2 tables; Proceedings of the AAS topical
conference "Giants of Eclipse" (AASTCS-3), July 28 - August 2 2013, Monterey,
C
Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star
A search of the time-series photometry from NASA's Kepler spacecraft reveals
a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626
with a period of 290 days. The characteristics of the host star are well
constrained by high-resolution spectroscopy combined with an asteroseismic
analysis of the Kepler photometry, leading to an estimated mass and radius of
0.970 +/- 0.060 MSun and 0.979 +/- 0.020 RSun. The depth of 492 +/- 10ppm for
the three observed transits yields a radius of 2.38 +/- 0.13 REarth for the
planet. The system passes a battery of tests for false positives, including
reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A
full BLENDER analysis provides further validation of the planet interpretation
by showing that contamination of the target by an eclipsing system would rarely
mimic the observed shape of the transits. The final validation of the planet is
provided by 16 radial velocities obtained with HIRES on Keck 1 over a one year
span. Although the velocities do not lead to a reliable orbit and mass
determination, they are able to constrain the mass to a 3{\sigma} upper limit
of 124 MEarth, safely in the regime of planetary masses, thus earning the
designation Kepler-22b. The radiative equilibrium temperature is 262K for a
planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is
a rocky planet, it is the first confirmed planet with a measured radius to
orbit in the Habitable Zone of any star other than the Sun.Comment: Accepted to Ap
Asteroseismic diagrams from a survey of solar-like oscillations with Kepler
Photometric observations made by the NASA Kepler Mission have led to a
dramatic increase in the number of main-sequence and subgiant stars with
detected solar-like oscillations. We present an ensemble asteroseismic analysis
of 76 solar-type stars. Using frequencies determined from the Kepler
time-series photometry, we have measured three asteroseismic parameters that
characterize the oscillations: the large frequency separation (\Delta \nu), the
small frequency separation between modes of l=0 and l=2 (\delta \nu_02), and
the dimensionless offset (\epsilon). These measurements allow us to construct
asteroseismic diagrams, namely the so-called C-D diagram of \delta \nu_02
versus \Delta \nu, and the recently re-introduced {\epsilon} diagram. We
compare the Kepler results with previously observed solar-type stars and with
theoretical models. The positions of stars in these diagrams places constraints
on their masses and ages. Additionally, we confirm the observational
relationship between {\epsilon} and T_eff that allows for the unambiguous
determination of radial order and should help resolve the problem of mode
identification in F stars.Comment: 6 pages, 5 figures, accepted for publication in The Astrophysical
Journal Letter
Young and Intermediate-age Distance Indicators
Distance measurements beyond geometrical and semi-geometrical methods, rely
mainly on standard candles. As the name suggests, these objects have known
luminosities by virtue of their intrinsic proprieties and play a major role in
our understanding of modern cosmology. The main caveats associated with
standard candles are their absolute calibration, contamination of the sample
from other sources and systematic uncertainties. The absolute calibration
mainly depends on their chemical composition and age. To understand the impact
of these effects on the distance scale, it is essential to develop methods
based on different sample of standard candles. Here we review the fundamental
properties of young and intermediate-age distance indicators such as Cepheids,
Mira variables and Red Clump stars and the recent developments in their
application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in
Space Science Reviews (Chapter 3 of a special collection resulting from the
May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space
Age
- …