28 research outputs found
Optical Light Curves of Supernovae
Photometry is the most easily acquired information about supernovae. The
light curves constructed from regular imaging provide signatures not only for
the energy input, the radiation escape, the local environment and the
progenitor stars, but also for the intervening dust. They are the main tool for
the use of supernovae as distance indicators through the determination of the
luminosity. The light curve of SN 1987A still is the richest and longest
observed example for a core-collapse supernova. Despite the peculiar nature of
this object, as explosion of a blue supergiant, it displayed all the
characteristics of Type II supernovae. The light curves of Type Ib/c supernovae
are more homogeneous, but still display the signatures of explosions in massive
stars, among them early interaction with their circumstellar material. Wrinkles
in the near-uniform appearance of thermonuclear (Type Ia) supernovae have
emerged during the past decade. Subtle differences have been observed
especially at near-infrared wavelengths. Interestingly, the light curve shapes
appear to correlate with a variety of other characteristics of these
supernovae. The construction of bolometric light curves provides the most
direct link to theoretical predictions and can yield sorely needed constraints
for the models. First steps in this direction have been already made.Comment: To be published in:"Supernovae and Gamma Ray Bursters", Lecture Notes
in Physics (http://link.springer.de/series/lnpp
TOI-257b (HD 19916b): A warm sub-saturn orbiting an evolved F-type star
We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA's Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the Minerva-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of MP = 0.138 ± 0.023 M J (43.9 ± 7.3, Mâ), a radius of RP = 0.639 ± 0.013 R J (7.16 ± 0.15, R â), bulk density of 0.65+0.12-0.11 (cgs), and period 18.38818 +0.00085 -0.00084 days. TOI-257b orbits a bright (V = 7.612 mag) somewhat evolved late F-type star with Mâ = 1.390 ± 0.046 rm M sun, Râ = 1.888 ± 0.033 Rsun, Teff = 6075 ± 90 rm K, and vsin i = 11.3 ± 0.5 km s-1. Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a âŒ71 day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars (âŒ100) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems
NaV1.7 gain-of-function mutations as a continuum: A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders.
Contains fulltext :
70933.pdf (publisher's version ) (Open Access)Gain-of-function mutations of Na(V)1.7 have been shown to produce two distinct disorders: Na(V)1.7 mutations that enhance activation produce inherited erythromelalgia (IEM), characterized by burning pain in the extremities; Na(V)1.7 mutations that impair inactivation produce a different, nonoverlapping syndrome, paroxysmal extreme pain disorder (PEPD), characterized by rectal, periocular, and perimandibular pain. Here we report a novel Na(V)1.7 mutation associated with a mixed clinical phenotype with characteristics of IEM and PEPD, with an alanine 1632 substitution by glutamate (A1632E) in domain IV S4-S5 linker. Patch-clamp analysis shows that A1632E produces changes in channel function seen in both IEM and PEPD mutations: A1632E hyperpolarizes (-7 mV) the voltage dependence of activation, slows deactivation, and enhances ramp responses, as observed in Na(V)1.7 mutations that produce IEM. A1632E depolarizes (+17mV) the voltage dependence of fast inactivation, slows fast inactivation, and prevents full inactivation, resulting in persistent inward currents similar to PEPD mutations. Using current clamp, we show that A1632E renders dorsal root ganglion (DRG) and trigeminal ganglion neurons hyperexcitable. These results demonstrate a Na(V)1.7 mutant with biophysical characteristics common to PEPD (impaired fast inactivation) and IEM (hyperpolarized activation, slow deactivation, and enhanced ramp currents) associated with a clinical phenotype with characteristics of both IEM and PEPD and show that this mutation renders DRG and trigeminal ganglion neurons hyperexcitable. These observations indicate that IEM and PEPD mutants are part of a physiological continuum that can produce a continuum of clinical phenotypes