1,633 research outputs found
Renormalization of Hamiltonian Field Theory; a non-perturbative and non-unitarity approach
Renormalization of Hamiltonian field theory is usually a rather painful
algebraic or numerical exercise. By combining a method based on the coupled
cluster method, analysed in detail by Suzuki and Okamoto, with a Wilsonian
approach to renormalization, we show that a powerful and elegant method exist
to solve such problems. The method is in principle non-perturbative, and is not
necessarily unitary.Comment: 16 pages, version shortened and improved, references added. To appear
in JHE
Block-Spin Approach to Electron Correlations
We consider an expansion of the ground state wavefunction of quantum lattice
many-body systems in a basis whose states are tensor products of block-spin
wavefunctions. We demonstrate by applying the method to the antiferromagnetic
spin-1/2 chain that by selecting the most important many-body states the
technique affords a severe truncation of the Hilbert space while maintaining
high accuracy.Comment: 17 pages, 3 Postscript figure
Derivation of greenhouse gas emission factors for peatlands managed for extraction in the Republic of Ireland and the United Kingdom
Drained peatlands are significant hotspots of carbon dioxide (CO2) emissions and may also be more vulnerable to fire with its associated gaseous emissions. Under the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol, greenhouse gas (GHG) emissions from peatlands managed for extraction are reported on an annual basis. However, the Tier 1 (default) emission factors (EFs) provided in the IPCC 2013 Wetlands Supplement for this land use category may not be representative in all cases and countries are encouraged to move to higher-tier reporting levels with reduced uncertainty levels based on country- or regional-specific data. In this study, we quantified (1) CO2-C emissions from nine peat extraction sites in the Republic of Ireland and the United Kingdom, which were initially disaggregated by land use type (industrial versus domestic peat extraction), and (2) a range of GHGs that are released to the atmosphere with the burning of peat. Drainage-related methane (CH4) and nitrous oxide (N2O) emissions as well as CO2-C emissions associated with the off-site decomposition of horticultural peat were not included here. Our results show that net CO2-C emissions were strongly controlled by soil temperature at the industrial sites (bare peat) and by soil temperature and leaf area index at the vegetated domestic sites. Our derived EFs of 1.70 (±0.47) and 1.64 (±0.44) t CO2-C ha−1 yr−1 for the industrial and domestic sites respectively are considerably lower than the Tier 1 EF (2.8 ± 1.7 t CO2-C ha−1 yr−1) provided in the Wetlands Supplement. We propose that the difference between our derived values and the Wetlands Supplement value is due to differences in peat quality and, consequently, decomposition rates. Emissions from burning of the peat (g kg−1 dry fuel burned) were estimated to be approximately 1346 CO2, 8.35 methane (CH4), 218 carbon monoxide (CO), 1.53 ethane (C2H6), 1.74 ethylene (C2H4), 0.60 methanol (CH3OH), 2.21 hydrogen cyanide (HCN) and 0.73 ammonia (NH3), and this emphasises the importance of understanding the full suite of trace gas emissions from biomass burning. Our results highlight the importance of generating reliable Tier 2 values for different regions and land use categories. Furthermore, given that the IPCC Tier 1 EF was only based on 20 sites (all from Canada and Fennoscandia), we suggest that data from another 9 sites significantly expand the global data set, as well as adding a new region
Flow equation analysis of the anisotropic Kondo model
We use the new method of infinitesimal unitary transformations to calculate
zero temperature correlation functions in the strong-coupling phase of the
anisotropic Kondo model. We find the dynamics on all energy scales including
the crossover behaviour from weak to strong coupling. The integrable structure
of the Hamiltonian is not used in our approach. Our method should also be
useful in other strong-coupling models since few other analytical methods allow
the evaluation of their correlation functions on all energy scales.Comment: 4 pages RevTeX, 2 eps figures include
Universal asymptotic behavior in flow equations of dissipative systems
Based on two dissipative models, universal asymptotic behavior of flow
equations for Hamiltonians is found and discussed. Universal asymptotic
behavior only depends on fundamental bath properties but not on initial system
parameters, and the integro-differential equations possess an universal
attractor. The asymptotic flow of the Hamiltonian can be characterized by a
non-local differential equation which only depends on one parameter -
independent of the dissipative system or truncation scheme. Since the fixed
point Hamiltonian is trivial, the physical information is completely
transferred to the transformation of the observables. This yields a more stable
flow which is crucial for the numerical evaluation of correlation functions.
Furthermore, the low energy behavior of correlation functions is determined
analytically. The presented procedure can also be applied if relevant
perturbations are present as is demonstrated by evaluating dynamical
correlation functions for sub-Ohmic environments. It can further be generalized
to other dissipative systems.Comment: 15 pages, 9 figures; to appear in Phys. Rev.
Void elimination in screen printed thick film dielectric pastes
The problem is to understand the mechanisms for the formation and evolution of defects in wet screen printed layers. The primary objective is to know how best to alter the properties of the paste (rather than the geometry of the screen printing process itself) in order to eliminate the defects.
With these goals in mind the work done during the Study Group reported here was as follows; to describe a simple model for the closure of craters, a model for the partial closure of vias, a possible mechanism for the formation of pinholes and finally a more detailed consideration of the screen printing process
Matching functions for heavy particles
We introduce matching functions as a means of summing heavy-quark logarithms
to any order. Our analysis is based on Witten's approach, where heavy quarks
are decoupled one at a time in a mass-independent renormalization scheme. The
outcome is a generalization of the matching conditions of Bernreuther and
Wetzel: we show how to derive closed formulas for summed logarithms to any
order, and present explicit expressions for leading order and next-to-leading
order contributions. The decoupling of heavy quarks in theories lacking
asymptotic freedom is also considered.Comment: Revised version to be published in Physical Review D; added section
with application to decoupling of heavy particles in non-asymptotically free
theorie
Non-linear feedback effects in coupled Boson-Fermion systems
We address ourselves to a class of systems composed of two coupled subsystems
without any intra-subsystem interaction: itinerant Fermions and localized
Bosons on a lattice. Switching on an interaction between the two subsystems
leads to feedback effects which result in a rich dynamical structure in both of
them. Such feedback features are studied on the basis of the flow equation
technique - an infinite series of infinitesimal unitary transformations - which
leads to a gradual elimination of the inter-subsystem interaction. As a result
the two subsystems get decoupled but their renormalized kinetic energies become
mutually dependent on each other. Choosing for the inter - subsystem
interaction a charge exchange term (the Boson-Fermion model) the initially
localized Bosons acquire itinerancy through their dependence on the
renormalized Fermion dispersion. This latter evolves from a free particle
dispersion into one showing a pseudogap structure near the chemical potential.
Upon lowering the temperature both subsystems simultaneously enter a
macroscopic coherent quantum state. The Bosons become superfluid, exhibiting a
soundwave like dispersion while the Fermions develop a true gap in their
dispersion. The essential physical features described by this technique are
already contained in the renormalization of the kinetic terms in the respective
Hamiltonians of the two subsystems. The extra interaction terms resulting in
the process of iteration only strengthen this physics. We compare the results
with previous calculations based on selfconsistent perturbative approaches.Comment: 14 pages, 16 figures, accepted for publication in Phys. Rev.
Parity Invariance and Effective Light-Front Hamiltonians
In the light-front form of field theory, boost invariance is a manifest
symmetry. On the downside, parity and rotational invariance are not manifest,
leaving the possibility that approximations or incorrect renormalization might
lead to violations of these symmetries for physical observables. In this paper,
it is discussed how one can turn this deficiency into an advantage and utilize
parity violations (or the absence thereof) in practice for constraining
effective light-front Hamiltonians. More precisely, we will identify
observables that are both sensitive to parity violations and easily calculable
numerically in a non-perturbative framework and we will use these observables
to constrain the finite part of non-covariant counter-terms in effective
light-front Hamiltonians.Comment: REVTEX, 9 page
Further analysis of the quantum critical point of CeLaRuSi
New data on the spin dynamics and the magnetic order of
CeLaRuSi are presented. The importance of the Kondo
effect at the quantum critical point of this system is emphasized from the
behaviour of the relaxation rate at high temperature and from the variation of
the ordered moment with respect to the one of the N\'eel temperature for
various .Comment: Contribution for the Festschrift on the occasion of Hilbert von
Loehneysen 60 th birthday. To be published as a special issue in the Journal
of Low Temperature Physic
- …
