1,633 research outputs found

    Renormalization of Hamiltonian Field Theory; a non-perturbative and non-unitarity approach

    Get PDF
    Renormalization of Hamiltonian field theory is usually a rather painful algebraic or numerical exercise. By combining a method based on the coupled cluster method, analysed in detail by Suzuki and Okamoto, with a Wilsonian approach to renormalization, we show that a powerful and elegant method exist to solve such problems. The method is in principle non-perturbative, and is not necessarily unitary.Comment: 16 pages, version shortened and improved, references added. To appear in JHE

    Block-Spin Approach to Electron Correlations

    Full text link
    We consider an expansion of the ground state wavefunction of quantum lattice many-body systems in a basis whose states are tensor products of block-spin wavefunctions. We demonstrate by applying the method to the antiferromagnetic spin-1/2 chain that by selecting the most important many-body states the technique affords a severe truncation of the Hilbert space while maintaining high accuracy.Comment: 17 pages, 3 Postscript figure

    Derivation of greenhouse gas emission factors for peatlands managed for extraction in the Republic of Ireland and the United Kingdom

    Get PDF
    Drained peatlands are significant hotspots of carbon dioxide (CO2) emissions and may also be more vulnerable to fire with its associated gaseous emissions. Under the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol, greenhouse gas (GHG) emissions from peatlands managed for extraction are reported on an annual basis. However, the Tier 1 (default) emission factors (EFs) provided in the IPCC 2013 Wetlands Supplement for this land use category may not be representative in all cases and countries are encouraged to move to higher-tier reporting levels with reduced uncertainty levels based on country- or regional-specific data. In this study, we quantified (1) CO2-C emissions from nine peat extraction sites in the Republic of Ireland and the United Kingdom, which were initially disaggregated by land use type (industrial versus domestic peat extraction), and (2) a range of GHGs that are released to the atmosphere with the burning of peat. Drainage-related methane (CH4) and nitrous oxide (N2O) emissions as well as CO2-C emissions associated with the off-site decomposition of horticultural peat were not included here. Our results show that net CO2-C emissions were strongly controlled by soil temperature at the industrial sites (bare peat) and by soil temperature and leaf area index at the vegetated domestic sites. Our derived EFs of 1.70 (±0.47) and 1.64 (±0.44) t CO2-C ha−1 yr−1 for the industrial and domestic sites respectively are considerably lower than the Tier 1 EF (2.8 ± 1.7 t CO2-C ha−1 yr−1) provided in the Wetlands Supplement. We propose that the difference between our derived values and the Wetlands Supplement value is due to differences in peat quality and, consequently, decomposition rates. Emissions from burning of the peat (g kg−1 dry fuel burned) were estimated to be approximately 1346 CO2, 8.35 methane (CH4), 218 carbon monoxide (CO), 1.53 ethane (C2H6), 1.74 ethylene (C2H4), 0.60 methanol (CH3OH), 2.21 hydrogen cyanide (HCN) and 0.73 ammonia (NH3), and this emphasises the importance of understanding the full suite of trace gas emissions from biomass burning. Our results highlight the importance of generating reliable Tier 2 values for different regions and land use categories. Furthermore, given that the IPCC Tier 1 EF was only based on 20 sites (all from Canada and Fennoscandia), we suggest that data from another 9 sites significantly expand the global data set, as well as adding a new region

    Flow equation analysis of the anisotropic Kondo model

    Full text link
    We use the new method of infinitesimal unitary transformations to calculate zero temperature correlation functions in the strong-coupling phase of the anisotropic Kondo model. We find the dynamics on all energy scales including the crossover behaviour from weak to strong coupling. The integrable structure of the Hamiltonian is not used in our approach. Our method should also be useful in other strong-coupling models since few other analytical methods allow the evaluation of their correlation functions on all energy scales.Comment: 4 pages RevTeX, 2 eps figures include

    Universal asymptotic behavior in flow equations of dissipative systems

    Full text link
    Based on two dissipative models, universal asymptotic behavior of flow equations for Hamiltonians is found and discussed. Universal asymptotic behavior only depends on fundamental bath properties but not on initial system parameters, and the integro-differential equations possess an universal attractor. The asymptotic flow of the Hamiltonian can be characterized by a non-local differential equation which only depends on one parameter - independent of the dissipative system or truncation scheme. Since the fixed point Hamiltonian is trivial, the physical information is completely transferred to the transformation of the observables. This yields a more stable flow which is crucial for the numerical evaluation of correlation functions. Furthermore, the low energy behavior of correlation functions is determined analytically. The presented procedure can also be applied if relevant perturbations are present as is demonstrated by evaluating dynamical correlation functions for sub-Ohmic environments. It can further be generalized to other dissipative systems.Comment: 15 pages, 9 figures; to appear in Phys. Rev.

    Void elimination in screen printed thick film dielectric pastes

    Get PDF
    The problem is to understand the mechanisms for the formation and evolution of defects in wet screen printed layers. The primary objective is to know how best to alter the properties of the paste (rather than the geometry of the screen printing process itself) in order to eliminate the defects. With these goals in mind the work done during the Study Group reported here was as follows; to describe a simple model for the closure of craters, a model for the partial closure of vias, a possible mechanism for the formation of pinholes and finally a more detailed consideration of the screen printing process

    Matching functions for heavy particles

    Get PDF
    We introduce matching functions as a means of summing heavy-quark logarithms to any order. Our analysis is based on Witten's approach, where heavy quarks are decoupled one at a time in a mass-independent renormalization scheme. The outcome is a generalization of the matching conditions of Bernreuther and Wetzel: we show how to derive closed formulas for summed logarithms to any order, and present explicit expressions for leading order and next-to-leading order contributions. The decoupling of heavy quarks in theories lacking asymptotic freedom is also considered.Comment: Revised version to be published in Physical Review D; added section with application to decoupling of heavy particles in non-asymptotically free theorie

    Non-linear feedback effects in coupled Boson-Fermion systems

    Full text link
    We address ourselves to a class of systems composed of two coupled subsystems without any intra-subsystem interaction: itinerant Fermions and localized Bosons on a lattice. Switching on an interaction between the two subsystems leads to feedback effects which result in a rich dynamical structure in both of them. Such feedback features are studied on the basis of the flow equation technique - an infinite series of infinitesimal unitary transformations - which leads to a gradual elimination of the inter-subsystem interaction. As a result the two subsystems get decoupled but their renormalized kinetic energies become mutually dependent on each other. Choosing for the inter - subsystem interaction a charge exchange term (the Boson-Fermion model) the initially localized Bosons acquire itinerancy through their dependence on the renormalized Fermion dispersion. This latter evolves from a free particle dispersion into one showing a pseudogap structure near the chemical potential. Upon lowering the temperature both subsystems simultaneously enter a macroscopic coherent quantum state. The Bosons become superfluid, exhibiting a soundwave like dispersion while the Fermions develop a true gap in their dispersion. The essential physical features described by this technique are already contained in the renormalization of the kinetic terms in the respective Hamiltonians of the two subsystems. The extra interaction terms resulting in the process of iteration only strengthen this physics. We compare the results with previous calculations based on selfconsistent perturbative approaches.Comment: 14 pages, 16 figures, accepted for publication in Phys. Rev.

    Parity Invariance and Effective Light-Front Hamiltonians

    Get PDF
    In the light-front form of field theory, boost invariance is a manifest symmetry. On the downside, parity and rotational invariance are not manifest, leaving the possibility that approximations or incorrect renormalization might lead to violations of these symmetries for physical observables. In this paper, it is discussed how one can turn this deficiency into an advantage and utilize parity violations (or the absence thereof) in practice for constraining effective light-front Hamiltonians. More precisely, we will identify observables that are both sensitive to parity violations and easily calculable numerically in a non-perturbative framework and we will use these observables to constrain the finite part of non-covariant counter-terms in effective light-front Hamiltonians.Comment: REVTEX, 9 page

    Further analysis of the quantum critical point of Ce1x_{1-x}Lax_{x}Ru2_{2}Si2_{2}

    Full text link
    New data on the spin dynamics and the magnetic order of Ce1x_{1-x}Lax_{x}Ru2_{2}Si2_{2} are presented. The importance of the Kondo effect at the quantum critical point of this system is emphasized from the behaviour of the relaxation rate at high temperature and from the variation of the ordered moment with respect to the one of the N\'eel temperature for various xx.Comment: Contribution for the Festschrift on the occasion of Hilbert von Loehneysen 60 th birthday. To be published as a special issue in the Journal of Low Temperature Physic
    corecore