65 research outputs found
Hydrodynamics of Spatially Ordered Superfluids
We derive the hydrodynamic equations for the supersolid and superhexatic
phases of a neutral two-dimensional Bose fluid. We find, assuming that the
normal part of the fluid is clamped to an underlying substrate, that both
phases can sustain third-sound modes and that in the supersolid phase there are
additional modes due to the superfluid motion of point defects (vacancies and
interstitials).Comment: 24 pages of ReVTeX and 7 uuencoded figures. Submitted for publication
in Phys. Rev.
Kob-Andersen model: a non-standard mechanism for the glassy transition
We present new results reflecting the analogies between the Kob-Andersen
model and other glassy systems. Studying the stability of the blocked
configurations above and below the transition we also give arguments that
supports their relevance for the glassy behaviour of the model.
However we find, surprisingly, that the organization of the phase space of
the system is different from the well known organization of other mean-field
spin glasses and structural glasses.Comment: New reference added and one update
Space-time Phase Transitions in Driven Kinetically Constrained Lattice Models
Kinetically constrained models (KCMs) have been used to study and understand
the origin of glassy dynamics. Despite having trivial thermodynamic properties,
their dynamics slows down dramatically at low temperatures while displaying
dynamical heterogeneity as seen in glass forming supercooled liquids. This
dynamics has its origin in an ergodic-nonergodic first-order phase transition
between phases of distinct dynamical "activity". This is a "space-time"
transition as it corresponds to a singular change in ensembles of trajectories
of the dynamics rather than ensembles of configurations. Here we extend these
ideas to driven glassy systems by considering KCMs driven into non-equilibrium
steady states through non-conservative forces. By classifying trajectories
through their entropy production we prove that driven KCMs also display an
analogous first-order space-time transition between dynamical phases of finite
and vanishing entropy production. We also discuss how trajectories with rare
values of entropy production can be realized as typical trajectories of a
mapped system with modified forces
Spatially heterogeneous ages in glassy dynamics
We construct a framework for the study of fluctuations in the nonequilibrium
relaxation of glassy systems with and without quenched disorder. We study two
types of two-time local correlators with the aim of characterizing the
heterogeneous evolution: in one case we average the local correlators over
histories of the thermal noise, in the other case we simply coarse-grain the
local correlators. We explain why the former describe the fingerprint of
quenched disorder when it exists, while the latter are linked to noise-induced
mesoscopic fluctuations. We predict constraints on the pdfs of the fluctuations
of the coarse-grained quantities. We show that locally defined correlations and
responses are connected by a generalized local out-of-equilibrium
fluctuation-dissipation relation. We argue that large-size heterogeneities in
the age of the system survive in the long-time limit. The invariance of the
theory under reparametrizations of time underlies these results. We relate the
pdfs of local coarse-grained quantities and the theory of dynamic random
manifolds. We define a two-time dependent correlation length from the spatial
decay of the fluctuations in the two-time local functions. We present numerical
tests performed on disordered spin models in finite and infinite dimensions.
Finally, we explain how these ideas can be applied to the analysis of the
dynamics of other glassy systems that can be either spin models without
disorder or atomic and molecular glassy systems.Comment: 47 pages, 60 Fig
- …