6 research outputs found

    Compressibility of a two-dimensional hole gas in tilted magnetic field

    Full text link
    We have measured compressibility of a two-dimensional hole gas in p-GaAs/AlGaAs heterostructure, grown on a (100) surface, in the presence of a tilted magnetic field. It turns out that the parallel component of magnetic field affects neither the spin splitting nor the density of states. We conclude that: (a) g-factor in the parallel magnetic field is nearly zero in this system; and (b) the level of the disorder potential is not sensitive to the parallel component of the magnetic field

    Nonlinear screening and percolative transition in a two-dimensional electron liquid

    Full text link
    A novel variational method is proposed for calculating the percolation threshold, the real-space structure, and the thermodynamical compressibility of a disordered two-dimensional electron liquid. Its high accuracy is verified against prior numerical results and newly derived exact asymptotics. The inverse compressibility is shown to have a strongly asymmetric minimum at a density that is approximately the triple of the percolation threshold. This implies that the experimentally observed metal-insulator transition takes place well before the percolation point is reached.Comment: 4 pages, 2 figures. (v2) minor changes (v3) reference added (v4) few more references adde

    Fate of the extended states in a vanishing magnetic field: the role of spins in strongly-interacting 2D electron systems

    Full text link
    In non-interacting or weakly-interacting 2D electron systems, the energy of the extended states increases as the perpendicular magnetic field approaches zero: the extended states "float up" in energy, giving rise to an insulator. However, in those 2D systems where metallic conductivity has been recently observed in zero magnetic field, the energy of the extended states remains constant or even decreases as B -> 0, thus allowing conduction in the limit of zero temperature. Here we show that aligning the electrons' spins causes the extended states to once more "float up" in energy in the vanishing perpendicular magnetic field, as they do for non- or weakly-interacting electrons. The difference between extended states that float up (an insulator) or remain finite (a metal) is thus tied to the existence of the spins

    Universal flow diagram for the magnetoconductance in disordered GaAs layers

    Full text link
    The temperature driven flow lines of the diagonal and Hall magnetoconductance data (G_{xx},G_{xy}) are studied in heavily Si-doped, disordered GaAs layers with different thicknesses. The flow lines are quantitatively well described by a recent universal scaling theory developed for the case of duality symmetry. The separatrix G_{xy}=1 (in units e^2/h) separates an insulating state from a spin-degenerate quantum Hall effect (QHE) state. The merging into the insulator or the QHE state at low temperatures happens along a semicircle separatrix G_{xx}^2+(G_{xy}-1)^2=1 which is divided by an unstable fixed point at (G_{xx},G_{xy})=(1,1).Comment: 10 pages, 5 figures, submitted to Phys. Rev. Let

    Levitation of quantum Hall critical states in a lattice model with spatially correlated disorder

    Full text link
    The fate of the current carrying states of a quantum Hall system is considered in the situation when the disorder strength is increased and the transition from the quantum Hall liquid to the Hall insulator takes place. We investigate a two-dimensional lattice model with spatially correlated disorder potentials and calculate the density of states and the localization length either by using a recursive Green function method or by direct diagonalization in connection with the procedure of level statistics. From the knowledge of the energy and disorder dependence of the localization length and the density of states (DOS) of the corresponding Landau bands, the movement of the current carrying states in the disorder--energy and disorder--filling-factor plane can be traced by tuning the disorder strength. We show results for all sub-bands, particularly the traces of the Chern and anti-Chern states as well as the peak positions of the DOS. For small disorder strength WW we recover the well known weak levitation of the critical states, but we also reveal, for larger WW, the strong levitation of these states across the Landau gaps without merging. We find the behavior to be similar for exponentially, Gaussian, and Lorentzian correlated disorder potentials. Our study resolves the discrepancies of previously published work in demonstrating the conflicting results to be only special cases of a general lattice model with spatially correlated disorder potentials. To test whether the mixing between consecutive Landau bands is the origin of the observed floating, we truncate the Hilbert space of our model Hamiltonian and calculate the behavior of the current carrying states under these restricted conditions.Comment: 10 pages, incl. 13 figures, accepted for publication in PR
    corecore