206 research outputs found
Genome And Secretome Analysis Of The Hemibiotrophic Fungal Pathogen, Moniliophthora Roreri, Which Causes Frosty Pod Rot Disease Of Cacao: Mechanisms Of The Biotrophic And Necrotrophic Phases
Background: The basidiomycete Moniliophthora roreri is the causal agent of Frosty pod rot (FPR) disease of cacao (Theobroma cacao), the source of chocolate, and FPR is one of the most destructive diseases of this important perennial crop in the Americas. This hemibiotroph infects only cacao pods and has an extended biotrophic phase lasting up to sixty days, culminating in plant necrosis and sporulation of the fungus without the formation of a basidiocarp.Results: We sequenced and assembled 52.3 Mb into 3,298 contigs that represent the M. roreri genome. Of the 17,920 predicted open reading frames (OFRs), 13,760 were validated by RNA-Seq. Using read count data from RNA sequencing of cacao pods at 30 and 60 days post infection, differential gene expression was estimated for the biotrophic and necrotrophic phases of this plant-pathogen interaction. The sequencing data were used to develop a genome based secretome for the infected pods. Of the 1,535 genes encoding putative secreted proteins, 1,355 were expressed in the biotrophic and necrotrophic phases. Analysis of the data revealed secretome gene expression that correlated with infection and intercellular growth in the biotrophic phase and invasive growth and plant cellular death in the necrotrophic phase.Conclusions: Genome sequencing and RNA-Seq was used to determine and validate the Moniliophthora roreri genome and secretome. High sequence identity between Moniliophthora roreri genes and Moniliophthora perniciosa genes supports the taxonomic relationship with Moniliophthora perniciosa and the relatedness of this fungus to other basidiomycetes. Analysis of RNA-Seq data from infected plant tissues revealed differentially expressed genes in the biotrophic and necrotrophic phases. The secreted protein genes that were upregulated in the biotrophic phase are primarily associated with breakdown of the intercellular matrix and modification of the fungal mycelia, possibly to mask the fungus from plant defenses. Based on the transcriptome data, the upregulated secreted proteins in the necrotrophic phase are hypothesized to be actively attacking the plant cell walls and plant cellular components resulting in necrosis. These genes are being used to develop a new understanding of how this disease interaction progresses and to identify potential targets to reduce the impact of this devastating disease. © 2014 Meinhardt et al.; licensee BioMed Central Ltd.151USDA; U.S. Department of AgricultureLatunde-Dada, A.O., Colletotrichum: tales of forcible entry, stealth, transient confinement and breakout (2001) Mol Plant Pathol, 2 (4), pp. 187-198. , 10.1046/j.1464-6722.2001.00069.x, 20573006Oliver, R.P., Ipcho, S.V.S., Arabidopsis pathology breathes new life into the necrotrophs-vs.-biotrophs classification of fungal pathogens (2004) Mol Plant Pathol, 5 (4), pp. 347-352. , 10.1111/j.1364-3703.2004.00228.x, 20565602Catanzariti, A.M., Dodds, P.N., Lawrence, G.J., Ayliffe, M.A., Ellis, J.G., Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors (2006) Plant Cell, 18 (1), pp. 243-256. , 10.1105/tpc.105.035980, 1323496, 16326930Link, T.I., Voegele, R.T., Secreted proteins of Uromyces fabae: similarities and stage specificity (2008) Mol Plant Pathol, 9 (1), pp. 59-66Brown, N.A., Antoniw, J., Hammond-Kosack, K.E., The predicted secretome of the plant pathogenic fungus Fusarium graminearum: a refined comparative analysis (2012) Plos One, 7 (4), pp. e33731. , 10.1371/journal.pone.0033731, 3320895, 22493673Thomma, B.P., Alternaria spp.: from general saprophyte to specific parasite (2003) Mol Plant Pathol, 4 (4), pp. 225-236. , 10.1046/j.1364-3703.2003.00173.x, 20569383Evans, H.C., Stalpers, J.A., Samson, R.A., Benny, G.L., Taxonomy of Monilia-Roreri, an important pathogen of theobroma-cacao in South-America (1978) Can J Bot, 56 (20), pp. 2528-2532Aime, M.C., Phillips-Mora, W., The causal agents of witches' broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae (2005) Mycologia, 97 (5), pp. 1012-1022. , 10.3852/mycologia.97.5.1012, 16596953Phillips-Mora, W., Wilkinson, M.J., Frosty pod of cacao: a disease with a limited geographic range but unlimited potential for damage (2007) Phytopathology, 97 (12), pp. 1644-1647. , 10.1094/PHYTO-97-12-1644, 18943726Meinhardt, L.W., Rincones, J., Bailey, B.A., Aime, M.C., Griffith, G.W., Zhang, D.P., Pereira, G.A.G., Moniliophthora perniciosa, the causal agent of witches' broom disease of cacao: what's new from this old foe? (2008) Mol Plant Pathol, 9 (5), pp. 577-588. , 10.1111/j.1364-3703.2008.00496.x, 19018989Ferreira, L.F.R., Duarte, K.M.R., Gomes, L.H., Carvalho, R.S., Leal, G.A., Aguiar, M.M., Armas, R.D., Tavares, F.C.A., Genetic diversity of polysporic isolates of Moniliophthora perniciosa (Tricholomataceae) (2012) Genet Mol Res, 11 (3), pp. 2559-2568. , 10.4238/2012.July.10.11, 22869076Phillips-Mora, W., Wilkinson, M.J., Frosty pod: a disease of limited geographic distribution but unlimited potential for damage (2006) Phytopathology, 96 (6), pp. S138-S138Evans, H.C., (1981) Pod Rot of Cacao caused by Moniliophthora (Monilia) roreri, , London: Commonwealth Agricultural Bureau, 24Joosten, M., de Wit, P., THE TOMATO-CLADOSPORIUM FULVUM INTERACTION: a versatile experimental system to study plant-pathogen interactions (1999) Annu Rev Phytopathol, 37, pp. 335-367. , 10.1146/annurev.phyto.37.1.335, 11701827Perfect, S.E., Green, J.R., Infection structures of biotrophic and hemibiotrophic fungal plant pathogens (2001) Mol Plant Pathol, 2 (2), pp. 101-108. , 10.1046/j.1364-3703.2001.00055.x, 20572997Scarpari, L.M., Meinhardt, L.W., Mazzafera, P., Pomella, A.W.V., Schiavinato, M.A., Cascardo, J.C.M., Pereira, G.A.G., Biochemical changes during the development of witches' broom: the most important disease of cocoa in Brazil caused by Crinipellis perniciosa (2005) J Exp Bot, 56 (413), pp. 865-877. , 10.1093/jxb/eri079, 15642708Melnick, R.L., Marelli, J., Bailey, B.A., The molecular interaction of Theobroma cacao and Moniliophthora perniciosa, causal agent of witches' broom, during infection of young pods (2011) Phytopathology, 101 (6), pp. S274-S274Melnick, R.L., Marelli, J.P., Sicher, R.C., Strem, M.D., Bailey, B.A., The interaction of Theobroma cacao and Moniliophthora perniciosa, the causal agent of witches' broom disease, during parthenocarpy (2012) Tree Genet Genomes, 8 (6), pp. 1261-1279Thomazella, D.P., Teixeira, P.J., Oliveira, H.C., Saviani, E.E., Rincones, J., Toni, I.M., Reis, O., Pereira, G.A., The hemibiotrophic cacao pathogen Moniliophthora perniciosa depends on a mitochondrial alternative oxidase for biotrophic development (2012) New Phytol, 194 (4), pp. 1025-1034. , 10.1111/j.1469-8137.2012.04119.x, 3415677, 22443281Mondego, J.M., Carazzolle, M.F., Costa, G.G., Formighieri, E.F., Parizzi, L.P., Rincones, J., Cotomacci, C., Pereira, G.A.G., A genome survey of Moniliophthora perniciosa gives new insights into Witches' Broom disease of cacao (2008) Bmc Genomics, 9, p. 548. , 10.1186/1471-2164-9-548, 2644716, 19019209Bailey, B.A., Crozier, J., Sicher, R.C., Strem, M.D., Melnick, R., Carazzolle, M.F., Costa, G.G.L., Meinhardt, L., Dynamic changes in pod and fungal physiology associated with the shift from biotrophy to necrotrophy during the infection of Theobroma cacao by Moniliophthora roreri (2013) Physiol Mol Plant P, 81, pp. 84-96Henrissat, B., A classification of glycosyl hydrolases based on amino acid sequence similarities (1991) Biochem J, 280 (PART 2), pp. 309-316. , 1130547, 1747104Dias, F.M., Vincent, F., Pell, G., Prates, J.A., Centeno, M.S., Tailford, L.E., Ferreira, L.M., Gilbert, H.J., Insights into the molecular determinants of substrate specificity in glycoside hydrolase family 5 revealed by the crystal structure and kinetics of Cellvibrio mixtus mannosidase 5A (2004) J Biol Chem, 279 (24), pp. 25517-25526. , 10.1074/jbc.M401647200, 15014076Fibriansah, G., Masuda, S., Koizumi, N., Nakamura, S., Kumasaka, T., The 1.3 A crystal structure of a novel endo-beta-1,3-glucanase of glycoside hydrolase family 16 from alkaliphilic Nocardiopsis sp. strain F96 (2007) Proteins, 69 (3), pp. 683-690. , 10.1002/prot.21589, 17879342Markovic, O., Janecek, S., Pectin degrading glycoside hydrolases of family 28: sequence-structural features, specificities and evolution (2001) Protein Eng, 14 (9), pp. 615-631. , 10.1093/protein/14.9.615, 11707607Vandermarliere, E., Bourgois, T.M., Winn, M.D., van Campenhout, S., Volckaert, G., Delcour, J.A., Strelkov, S.V., Courtin, C.M., Structural analysis of a glycoside hydrolase family 43 arabinoxylan arabinofuranohydrolase in complex with xylotetraose reveals a different binding mechanism compared with other members of the same family (2009) Biochem J, 418 (1), pp. 39-47. , 10.1042/BJ20081256, 18980579Tiels, P., Baranova, E., Piens, K., De Visscher, C., Pynaert, G., Nerinckx, W., Stout, J., Callewaert, N., A bacterial glycosidase enables mannose-6-phosphate modification and improved cellular uptake of yeast-produced recombinant human lysosomal enzymes (2012) Nat Biotechnol, 30 (12), pp. 1225-1231. , 10.1038/nbt.2427, 23159880Ferreira, P., Hernandez-Ortega, A., Herguedas, B., Martinez, A.T., Medina, M., Aryl-alcohol oxidase involved in lignin degradation: a mechanistic study based on steady and pre-steady state kinetics and primary and solvent isotope effects with two alcohol substrates (2009) J Biol Chem, 284 (37), pp. 24840-24847. , 10.1074/jbc.M109.011593, 2757187, 19574215Mayer, A.M., Staples, R.C., Laccase: new functions for an old enzyme (2002) Phytochemistry, 60 (6), pp. 551-565. , 10.1016/S0031-9422(02)00171-1, 12126701Kersten, P.J., Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase (1990) Proc Natl Acad Sci U S A, 87 (8), pp. 2936-2940. , 10.1073/pnas.87.8.2936, 53808, 11607073Henrissat, B., Callebaut, I., Fabrega, S., Lehn, P., Mornon, J.P., Davies, G., Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases (1995) Proc Natl Acad Sci U S A, 92 (15), pp. 7090-7094. , 10.1073/pnas.92.15.7090, 41477, 7624375Wostemeyer, J., Kreibich, A., Repetitive DNA elements in fungi (Mycota): impact on genomic architecture and evolution (2002) Curr Genet, 41 (4), pp. 189-198. , 10.1007/s00294-002-0306-y, 12172959Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Oliver, S.G., Life with 6000 genes (1996) Science, 274 (5287), pp. 546-563. , 547, 10.1126/science.274.5287.546, 8849441Dean, R.A., Talbot, N.J., Ebbole, D.J., Farman, M.L., Mitchell, T.K., Orbach, M.J., Thon, M., Nicol, R., The genome sequence of the rice blast fungus Magnaporthe grisea (2005) Nature, 434 (7036), pp. 980-986. , 10.1038/nature03449, 15846337Labbe, J., Murat, C., Morin, E., Tuskan, G.A., Le Tacon, F., Martin, F., Characterization of transposable elements in the ectomycorrhizal fungus Laccaria bicolor (2012) Plos One, 7 (8), pp. e40197. , 10.1371/journal.pone.0040197, 3411680, 22870194Adomako, D., Cocoa pod husk pectin (1972) Phytochemistry, 11 (3), p. 1145Gan, P., Ikeda, K., Irieda, H., Narusaka, M., O'Connell, R.J., Narusaka, Y., Takano, Y., Shirasu, K., Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi (2013) New Phytol, 197 (4), pp. 1236-1249. , 10.1111/nph.12085, 23252678Garcia, O., Macedo, J.A.N., Tiburcio, R., Zaparoli, G., Rincones, J., Bittencourt, L.M.C., Ceita, G.O., Cascardo, J.C., Characterization of necrosis and ethylene-inducing proteins (NEP) in the basidiomycete Moniliophthora perniciosa, the causal agent of witches' broom in Theobroma cacao (2007) Mycol Res, 111, pp. 443-455. , 10.1016/j.mycres.2007.01.017, 17512713Pemberton, C.L., Salmond, G.P., The Nep1-like proteins-a growing family of microbial elicitors of plant necrosis (2004) Mol Plant Pathol, 5 (4), pp. 353-359. , 10.1111/j.1364-3703.2004.00235.x, 20565603Zaparoli, G., Barsottini, M.R., de Oliveira, J.F., Dyszy, F., Teixeira, P.J., Barau, J.G., Garcia, O., Dias, S.M., The crystal structure of necrosis-and ethylene-inducing protein 2 from the causal agent of cacao's Witches' Broom disease reveals key elements for its activity (2011) Biochemistry-Us, 50 (45), pp. 9901-9910Cabral, A., Oome, S., Sander, N., Kufner, I., Nurnberger, T., Van den Ackerveken, G., Nontoxic Nep1-like proteins of the downy mildew pathogen Hyaloperonospora arabidopsidis: repression of necrosis-inducing activity by a surface-exposed region (2012) Mol Plant Microbe Interact, 25 (5), pp. 697-708. , 10.1094/MPMI-10-11-0269, 22235872Mosquera, G., Giraldo, M.C., Khang, C.H., Coughlan, S., Valent, B., Interaction transcriptome analysis identifies magnaporthe oryzae BAS1-4 as Biotrophy-associated secreted proteins in rice blast disease (2009) Plant Cell, 21 (4), pp. 1273-1290. , 10.1105/tpc.107.055228, 2685627, 19357089Paper, J.M., Scott-Craig, J.S., Adhikari, N.D., Cuomo, C.A., Walton, J.D., Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum (2007) Proteomics, 7 (17), pp. 3171-3183. , 10.1002/pmic.200700184, 17676664van den Burg, H.A., Harrison, S.J., Joosten, M.H., Vervoort, J., de Wit, P.J., Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection (2006) Mol Plant Microbe Interact, 19 (12), pp. 1420-1430. , 10.1094/MPMI-19-1420, 17153926Roby, D., Gadelle, A., Toppan, A., Chitin oligosaccharides as elicitors of chitinase activity in melon plants (1987) Biochem Biophys Res Commun, 143 (3), pp. 885-892. , 10.1016/0006-291X(87)90332-9, 3566760Deising, H., Siegrist, J., Chitin deacetylase activity of the rust uromyces-viciae-fabae is controlled by fungal morphogenesis (1995) Fems Microbiol Lett, 127 (3), pp. 207-211Teixeira, P.J.P.L., Thomazella, D.P.T., Vidal, R.O., Do Prado, P.F.V., Reis, O., Baroni, R.M., Franco, S.F., Mondego, J.M.C., The fungal pathogen moniliophthora perniciosa has genes similar to plant PR-1 that are highly expressed during its interaction with cacao (2012) Plos One, 7 (9)Riviere, M.P., Marais, A., Ponchet, M., Willats, W., Galiana, E., Silencing of acidic pathogenesis-related PR-1 genes increases extracellular beta-(1→ 3)-glucanase activity at the onset of tobacco defence reactions (2008) J Exp Bot, 59 (6), pp. 1225-1239. , 10.1093/jxb/ern044, 18390849Levy, A., Guenoune-Gelbart, D., Epel, B.L., Beta-1,3-Glucanases: plasmodesmal gate keepers for intercellular communication (2007) Plant Signal Behav, 2 (5), pp. 404-407. , 10.4161/psb.2.5.4334, 2634228, 19704615Prados-Rosales, R.C., Roldan-Rodriguez, R., Serena, C., Lopez-Berges, M.S., Guarro, J., Martinez-del-Pozo, A., Di Pietro, A., A PR-1-like protein of fusarium oxysporum functions in virulence on mammalian hosts (2012) J Biol Chem, 287 (26), pp. 21970-21979. , 10.1074/jbc.M112.364034, 3381157, 22553200Kershaw, M.J., Talbot, N.J., Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis (1998) Fungal Genet Biol, 23 (1), pp. 18-33. , 10.1006/fgbi.1997.1022, 9501475Zelena, K., Takenberg, M., Lunkenbein, S., Woche, S.K., Nimtz, M., Berger, R.G., PfaH2: a novel hydrophobin from the ascomycete Paecilomyces farinosus (2013) Biotechnol Appl Biochem, 60 (2), pp. 147-154. , 10.1002/bab.1077, 23600571Wosten, H.A., Hydrophobins: multipurpose proteins (2001) Annu Rev Microbiol, 55, pp. 625-646. , 10.1146/annurev.micro.55.1.625, 11544369Bayry, J., Aimanianda, V., Guijarro, J.I., Sunde, M., Latge, J.P., Hydrophobins-unique fungal proteins (2012) PLoS Pathog, 8 (5), pp. e1002700. , 10.1371/journal.ppat.1002700, 3364958, 22693445De Oliveira, A.L., Gallo, M., Pazzagli, L., Benedetti, C.E., Cappugi, G., Scala, A., Pantera, B., Cicero, D.O., The structure of the elicitor cerato-platanin (CP), the first member of the CP fungal protein family, reveals a double psi beta-barrel fold and carbohydrate binding (2011) J Biol Chem, 286 (20), pp. 17560-17568. , 10.1074/jbc.M111.223644, 3093830, 21454637Baccelli, I., Comparini, C., Bettini, P.P., Martellini, F., Ruocco, M., Pazzagli, L., Bernardi, R., Scala, A., The expression of the cerato-platanin gene is related to hyphal growth and chlamydospores formation in Ceratocystis platani (2012) Fems Microbiol Lett, 327 (2), pp. 155-163. , 10.1111/j.1574-6968.2011.02475.x, 22136757Zaparoli, G., Cabrera, O.G., Medrano, F.J., Tiburcio, R., Lacerda, G., Pereira, G.G., Identification of a second family of genes in Moniliophthora perniciosa, the causal agent of witches' broom disease in cacao, encoding necrosis-inducing proteins similar to cerato-platanins (2009) Mycol Res, 113, pp. 61-72. , 10.1016/j.mycres.2008.08.004, 18796332Lombardi, L., Faoro, F., Luti, S., Baccelli, I., Martellini, F., Bernardi, R., Picciarelli, P., Pazzagli, L., Differential timing of defense-related responses induced by cerato-platanin and cerato-populin, two non-catalytic fungal elicitors (2013) Physiol Plant, 149, pp. 408-421Yang, Y., Zhang, H., Li, G., Li, W., Wang, X., Song, F., Ectopic expression of MgSM1, a Cerato-platanin family protein from Magnaporthe grisea, confers broad-spectrum disease resistance in Arabidopsis (2009) Plant Biotechnol J, 7 (8), pp. 763-777. , 10.1111/j.1467-7652.2009.00442.x, 19754836Bhadauria, V., Banniza, S., Vandenberg, A., Selvaraj, G., Wei, Y., EST mining identifies proteins putatively secreted by the anthracnose pathogen Colletotrichum truncatum (2011) Bmc Genomics, 12, p. 327. , 10.1186/1471-2164-12-327, 3149586, 21699715Frischmann, A., Neudl, S., Gaderer, R., Bonazza, K., Zach, S., Gruber, S., Spadiut, O., Seidl-Seiboth, V., Self-assembly at air/water interfaces and carbohydrate binding properties of the small secreted protein EPL1 from the fungus trichoderma atroviride (2013) J Biol Chem, 288 (6), pp. 4278-4287. , 10.1074/jbc.M112.427633, 3567679, 23250741Jeong, J.S., Mitchell, T.K., Dean, R.A., The magnaporthe grisea snodprot1 homolog, MSP1, is required for virulence (2007) Fems Microbiol Lett, 273 (2), pp. 157-165. , 10.1111/j.1574-6968.2007.00796.x, 17590228Peter, M., Courty, P.E., Kohler, A., Delaruelle, C., Martin, D., Tagu, D., Frey-Klett, P., Martin, F., Analysis of expressed sequence tags from the ectomycorrhizal basidiomycetes Laccaria bicolor and Pisolithus microcarpus (2003) New Phytol, 159 (1), pp. 117-129Cosgrove, D.J., Loosening of plant cell walls by expansins (2000) Nature, 407 (6802), pp. 321-326. , 10.1038/35030000, 11014181Quiroz-Castaneda, R.E., Martinez-Anaya, C., Cuervo-Soto, L.I., Segovia, L., Folch-Mallol, J.L., Loosenin, a novel protein with cellulose-disrupting activity from Bjerkandera adusta (2011) Microb Cell Fact, 10, p. 8. , 10.1186/1475-2859-10-8, 3050684, 21314954Brotman, Y., Briff, E., Viterbo, A., Chet, I., Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization (2008) Plant Physiol, 147 (2), pp. 779-789. , 10.1104/pp.108.116293, 2409044, 18400936Yamada, M., Sakuraba, S., Shibata, K., Taguchi, G., Inatomi, S., Okazaki, M., Shimosaka, M., Isolation and analysis of genes specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes by fluorescence differential display (2006) Fems Microbiol Lett, 254 (1), pp. 165-172. , 10.1111/j.1574-6968.2005.00023.x, 16451195Rincones, J., Scarpari, L.M., Carazzolle, M.F., Mondego, J.M.C., Formighieri, E.F., Barau, J.G., Costa, G.G.L., Pereira, G.A., Differential gene expression between the biotrophic-like and saprotrophic mycelia of the witches' broom pathogen Moniliophthora perniciosa (2008) Mol Plant Microbe In, 21 (7), pp. 891-908Zerbino, D.R., Birney, E., Velvet: algorithms for de novo short read assembly using de Bruijn graphs (2008) Genome Res, 18 (5), pp. 821-829. , 10.1101/gr.074492.107, 2336801, 18349386Sommer, D.D., Delcher, A.L., Salzberg, S.L., Pop, M., Minimus: a fast, lightweight genome assembler (2007) BMC Bioinforma, 8, p. 64Ter-Hovhannisyan, V., Lomsadze, A., Chernoff, Y.O., Borodovsky, M., Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training (2008) Genome Res, 18 (12), pp. 1979-1990. , 10.1101/gr.081612.108, 2593577, 18757608Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., Morgenstern, B., AUGUSTUS: ab initio prediction of alternative transcripts (2006) Nucleic Acids Res, 34, pp. W435-W439. , Web Server issue, 1538822, 16845043Stanke, M., Tzvetkova, A., Morgenstern, B., AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome (2006) Genome Biol, 7 (SUPPL. 1), pp. S11 11-18Slater, G.S., Birney, E., Automated generation of heuristics for biological sequence comparison (2005) BMC Bioinforma, 6, p. 31Borodovsky, M., Lomsadze, A., Ivanov, N., Mills, R., Eukaryotic gene prediction using GeneMark.hmm (2003) Curr Protoc Bioinformatics, , Chapter 4, Unit4 6Haas, B.J., Salzberg, S.L., Zhu, W., Pertea, M., Allen, J.E., Orvis, J., White, O., Wortman, J.R., Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments (2008) Genome Biol, 9 (1), pp. R7. , 10.1186/gb-2008-9-1-r7, 2395244, 18190707Koski, L.B., Gray, M.W., Lang, B.F., Burger, G., AutoFACT: an automatic functional annotation and classification tool (2005) BMC Bioinforma, 6, p. 151Suzek, B.E., Huang, H., McGarvey, P., Mazumder, R., Wu, C.H., UniRef: comprehensive and non-redundant UniProt reference clusters (2007) Bioinformatics, 23 (10), pp. 1282-1288. , 10.1093/bioinformatics/btm098, 17379688Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S.R., Griffiths-Jones, S., Sonnhammer, E.L., The Pfam protein families database (2002) Nucleic Acids Res, 30 (1), pp. 276-280. , 10.1093/nar/30.1.276, 99071,
Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry A_LL and
the differential cross section for inclusive Pi0 production at midrapidity in
polarized proton collisions at sqrt(s) = 200 GeV. The cross section was
measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be
in good agreement with a next-to-leading order perturbative QCD calculation.
The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T <
11 GeV/c and excludes a maximal positive gluon polarization in the proton. The
mean transverse momentum fraction of Pi0's in their parent jets was found to be
around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
High non-photonic electron production in + collisions at = 200 GeV
We present the measurement of non-photonic electron production at high
transverse momentum ( 2.5 GeV/) in + collisions at
= 200 GeV using data recorded during 2005 and 2008 by the STAR
experiment at the Relativistic Heavy Ion Collider (RHIC). The measured
cross-sections from the two runs are consistent with each other despite a large
difference in photonic background levels due to different detector
configurations. We compare the measured non-photonic electron cross-sections
with previously published RHIC data and pQCD calculations. Using the relative
contributions of B and D mesons to non-photonic electrons, we determine the
integrated cross sections of electrons () at 3 GeV/10 GeV/ from bottom and charm meson decays to be = 4.0({\rm
stat.})({\rm syst.}) nb and =
6.2({\rm stat.})({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure
Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV
We present measurements of the charge balance function, from the charged
particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au
collisions at 200 GeV using the STAR detector at RHIC. We observe that the
balance function is boost-invariant within the pseudorapidity coverage [-1.3,
1.3]. The balance function properly scaled by the width of the observed
pseudorapidity window does not depend on the position or size of the
pseudorapidity window. This scaling property also holds for particles in
different transverse momentum ranges. In addition, we find that the width of
the balance function decreases monotonically with increasing transverse
momentum for all centrality classes.Comment: 6 pages, 3 figure
Measurement of the Bottom contribution to non-photonic electron production in collisions at =200 GeV
The contribution of meson decays to non-photonic electrons, which are
mainly produced by the semi-leptonic decays of heavy flavor mesons, in
collisions at 200 GeV has been measured using azimuthal
correlations between non-photonic electrons and hadrons. The extracted
decay contribution is approximately 50% at a transverse momentum of GeV/. These measurements constrain the nuclear modification factor for
electrons from and meson decays. The result indicates that meson
production in heavy ion collisions is also suppressed at high .Comment: 6 pages, 4 figures, accepted by PR
Exploring the interstellar medium of NGC 891 at millimeter wavelengths using the NIKA2 camera
In the framework of the IMEGIN Large Program, we used the NIKA2 camera on the
IRAM 30-m telescope to observe the edge-on galaxy NGC 891 at 1.15 mm and 2 mm
and at a FWHM of 11.1" and 17.6", respectively. Multiwavelength data enriched
with the new NIKA2 observations fitted by the HerBIE SED code (coupled with the
THEMIS dust model) were used to constrain the physical properties of the ISM.
Emission originating from the diffuse dust disk is detected at all wavelengths
from mid-IR to mm, while mid-IR observations reveal warm dust emission from
compact HII regions. Indications of mm excess emission have also been found in
the outer parts of the galactic disk. Furthermore, our SED fitting analysis
constrained the mass fraction of the small (< 15 Angstrom) dust grains. We
found that small grains constitute 9.5% of the total dust mass in the galactic
plane, but this fraction increases up to ~ 20% at large distances (|z| > 3 kpc)
from the galactic plane.Comment: To appear in Proc. of the mm Universe 2023 conference, Grenoble
(France), June 2023, published by F. Mayet et al. (Eds), EPJ Web of
conferences, EDP Science
Global Carbon Budget 2018
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use and land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2008–2017), EFF was 9.4±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.7±0.02 GtC yr−1, SOCEAN 2.4±0.5 GtC yr−1, and SLAND 3.2±0.8 GtC yr−1, with a budget imbalance BIM of 0.5 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in EFF was about 1.6 % and emissions increased to 9.9±0.5 GtC yr−1. Also for 2017, ELUC was 1.4±0.7 GtC yr−1, GATM was 4.6±0.2 GtC yr−1, SOCEAN was 2.5±0.5 GtC yr−1, and SLAND was 3.8±0.8 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0±0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959–2017, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018, 2016, 2015a, b, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2018
- …