7 research outputs found
Magnetic Field Measurement with Ground State Alignment
Observational studies of magnetic fields are crucial. We introduce a process
"ground state alignment" as a new way to determine the magnetic field direction
in diffuse medium. The alignment is due to anisotropic radiation impinging on
the atom/ion. The consequence of the process is the polarization of spectral
lines resulting from scattering and absorption from aligned atomic/ionic
species with fine or hyperfine structure. The magnetic field induces precession
and realign the atom/ion and therefore the polarization of the emitted or
absorbed radiation reflects the direction of the magnetic field. The atoms get
aligned at their low levels and, as the life-time of the atoms/ions we deal
with is long, the alignment induced by anisotropic radiation is susceptible to
extremely weak magnetic fields (G). In fact,
the effects of atomic/ionic alignment were studied in the laboratory decades
ago, mostly in relation to the maser research. Recently, the atomic effect has
been already detected in observations from circumstellar medium and this is a
harbinger of future extensive magnetic field studies. A unique feature of the
atomic realignment is that they can reveal the 3D orientation of magnetic
field. In this article, we shall review the basic physical processes involved
in atomic realignment. We shall also discuss its applications to
interplanetary, circumstellar and interstellar magnetic fields. In addition,
our research reveals that the polarization of the radiation arising from the
transitions between fine and hyperfine states of the ground level can provide a
unique diagnostics of magnetic fields in the Epoch of Reionization.Comment: 30 pages, 12 figures, chapter in Lecture Notes in Physics "Magnetic
Fields in Diffuse Media". arXiv admin note: substantial text overlap with
arXiv:1203.557