10 research outputs found

    Analytic optimization of ion-driven hohlraums

    No full text

    The role of strong coupling in z-pinch-driven approaches to high yield inertial confinement fusion

    No full text
    Peak x-ray powers as high as 280±40 TW have been generated from the implosion of tungsten wire arrays on the Z Accelerator at Sandia National Laboratories. The high x-ray powers radiated by these z-pinches provide an attractive new driver option for high yield inertial confinement fusion (ICF). The high x-ray powers appear to be a result of using a large number of wires in the array which decreases the perturbation seed to the magnetic Rayleigh-Taylor (MRT ) instability and diminishes other 3-D effects. Simulations to confirm this hypothesis require a 3-D MHD code capability, and associated databases, to follow the evolution of the wires from cold solid through melt, vaporization, ionization, and finally to dense imploded plasma. Strong coupling plays a role in this process, the importance of which depends on the wire material and the current time history of the pulsed power driver. Strong coupling regimes are involved in the plasmas in the convolute and transmission line of the powerflow system. Strong coupling can also play a role in the physics of the z-pinch-driven high yield ICF target. Finally, strong coupling can occur in certain z-pinch-driven application experiments

    Simulation of heating-compressed fast-ignition cores by petawatt laser-generated electrons

    No full text
    In this work, unique particle-in-cell simulations to understand the relativistic electron beam thermalization and subsequent heating of highly compressed plasmas are reported. The simulations yield heated core parameters in good agreement with the GEKKO-PW experimental measurements, given reasonable assumptions of laser-to-electron coupling efficiency and the distribution function of laser-produced electrons. The classical range of the hot electrons exceeds the mass density-core diameter product ρ\rho L by a factor of several. Anomalous stopping appears to be present and is created by the growth and saturation of an electromagnetic filamentation mode that generates a strong back-EMF impeding hot electrons on the injection side of the density maxima .This methodology is then applied to the design of experiments for the ZR machine coupled to the Z-Beamlet/PW laser.
Sandia National Laboratories is also developing a combination of experimental and theoretical capabilities useful for the study of pulsed-power-driven fast ignition physics. In preparation for these fast ignition experiments, the theory group at Sandia is modeling various aspects of fast ignition physics. Numerical simulations of laser/plasma interaction, electron transport, and ion generation are being performed using the LSP code. LASNEX simulations of the compression of deuterium/tritium fuel in various reentrant cone geometries are being performed. Analytic and numerical modeling has been performed to determine the conditions required for fast ignition breakeven scaling. These results indicate that to achieve fusion energy output equal to the deposited energy in the core will require about 5% of the laser energy needed for ignition and might be an achievable goal with an upgraded Z-beamlet laser in short pulse mode

    Cryogenic target development for fast ignition with Z-pinch-driven fuel assembly

    No full text
    We are developing an alternative approach to indirect-drive fast ignition fusion targets in which a liquid cryogenic fuel layer is condensed in situ from a low pressure external gas supply and confined between a thick outer ablator shell and a thin inner shell. The shape and surface quality of the liquid fuel layer is determined entirely by the characteristics of the bounding shells. Liquid fuel targets of this type have a number of potential advantages including greatly reduced temperature control requirements and drastically reduced cost and complexity of the cryogenic support system compared to β\beta -layed DT targets. This liquid fuel concept is particularly appropriate for a hemispherical capsule configuration with single-sided x-ray drive by a z-pinch source. Technology issues for concentric-shell liquid cryogenic target development and progress in thin inner hemispherical shell fabrication are discussed

    Production of thermonuclear neutrons from deuterium-filled capsule implosion experiments driven by Z-Pinch dynamic hohlraums at Sandia National Laboratories' Z facility

    No full text
    Deuterium-filled capsule implosion experiments that employ the dynamic hohlraum are presently being conducted on the Z facility at Sandia National Laboratories. This paper will address the evidence for thermonuclear neutron production in the initial series and subsequent series of experiments that have been conducted to date employing Be, plastic, and glass capsules. The novelty of this approach motivated using several techniques to determine that the neutrons were thermonuclear in origin. The diagnostic techniques employed consist of measuring the average neutron energy and yield isotropy in two directions that were separated by a polar angle of 102 degrees. Additional “null” experiments were also employed that used the addition of Xe gas to the deuterium gas fill to suppress fusion neutron yields from the capsules by an order of magnitude. Use of these techniques are of particular importance because alternative, nonthermonuclear neutron processes were previously found to exist in Z-pinch and dense plasma focus plasmas. Such processes typically involved the creation of directed energetic ions leading to the production of nonthermal, “ion beam” generated neutrons. If not properly diagnosed, neutrons produced by these nonthermal processes could be misinterpreted as thermonuclear in origin
    corecore