1 research outputs found
Coherent states for exactly solvable potentials
A general algebraic procedure for constructing coherent states of a wide
class of exactly solvable potentials e.g., Morse and P{\"o}schl-Teller, is
given. The method, {\it a priori}, is potential independent and connects with
earlier developed ones, including the oscillator based approaches for coherent
states and their generalizations. This approach can be straightforwardly
extended to construct more general coherent states for the quantum mechanical
potential problems, like the nonlinear coherent states for the oscillators. The
time evolution properties of some of these coherent states, show revival and
fractional revival, as manifested in the autocorrelation functions, as well as,
in the quantum carpet structures.Comment: 11 pages, 4 eps figures, uses graphicx packag