1,035 research outputs found
Correlations in the Parton Recombination Model
We describe how parton recombination can address the recent measurement of
dynamical jet-like two particle correlations. In addition we discuss the
possible effect realistic light-cone wave-functions including higher
Fock-states may have on the well-known elliptic flow valence-quark number
scaling law.Comment: 4 pages, two figures, proceedings of the 18th International
Conference on Ultrarelativistic Nucleus-Nucleus Collisions: Quark Matter 2005
(QM 2005), Budapest, Hungary, 4-9 Aug 200
Making Radiomics More Reproducible across Scanner and Imaging Protocol Variations: A Review of Harmonization Methods
Radiomics converts medical images into mineable data via a high-throughput extraction of quantitative features used for clinical decision support. However, these radiomic features are susceptible to variation across scanners, acquisition protocols, and reconstruction settings. Various investigations have assessed the reproducibility and validation of radiomic features across these discrepancies. In this narrative review, we combine systematic keyword searches with prior domain knowledge to discuss various harmonization solutions to make the radiomic features more reproducible across various scanners and protocol settings. Different harmonization solutions are discussed and divided into two main categories: image domain and feature domain. The image domain category comprises methods such as the standardization of image acquisition, post-processing of raw sensor-level image data, data augmentation techniques, and style transfer. The feature domain category consists of methods such as the identification of reproducible features and normalization techniques such as statistical normalization, intensity harmonization, ComBat and its derivatives, and normalization using deep learning. We also reflect upon the importance of deep learning solutions for addressing variability across multi-centric radiomic studies especially using generative adversarial networks (GANs), neural style transfer (NST) techniques, or a combination of both. We cover a broader range of methods especially GANs and NST methods in more detail than previous reviews
A Theory of Ferroelectric Phase Transition in SrTiO induced by Isotope Replacement
A theory to describe the dielectric anomalies and the ferroelectric phase
transition induced by oxygen isotope replacement in SrTiO is developed. The
proposed model gives consistent explanation between apparently contradictory
experimental results on macroscopic dielectric measurements versus microscopic
lattice dynamical measurements by neutron scattering studies. The essential
feature is described by a 3-state quantum order-disorder system characterizing
the degenerated excited states in addition to the ground state of TiO
cluster. The effect of isotope replacement is taken into account through the
tunneling frequency between the excited states. The dielectric properties are
analyzed by the mean field approximation (MFA), which gives qualitative
agreements with experimental results throughout full range of the isotope
concentration.The phase diagram in the temperature-tunneling
frequencycoordinate is studied by a QMC method to confirm the qualitative
validity of the MFA analysis.Comment: 26 pages, 8 figure
Power-law behaviour evaluation from foreign exchange market data using a wavelet transform method
Numerous studies in the literature have shown that the dynamics of many time series including observations in foreign exchange markets exhibit scaling behaviours. A simple new statistical approach, derived from the concept of the continuous wavelet transform correlation function (WTCF), is proposed for the evaluation of power-law properties from observed data. The new method reveals that foreign exchange rates obey power-laws and thus belong to the class of self-similarity processes. (C) 2009 Elsevier B.V. All rights reserved
Strange Stars with a Density-Dependent Bag Parameter
We have studied strange quark stars in the framework of the MIT bag model,
allowing the bag parameter B to depend on the density of the medium. We have
also studied the effect of Cooper pairing among quarks, on the stellar
structure. Comparison of these two effects shows that the former is generally
more significant. We studied the resulting equation of state of the quark
matter, stellar mass-radius relation, mass-central-density relation,
radius-central-density relation, and the variation of the density as a function
of the distance from the centre of the star. We found that the
density-dependent B allows stars with larger masses and radii, due to
stiffening of the equation of state. Interestingly, certain stellar
configurations are found to be possible only if B depends on the density. We
have also studied the effect of variation of the superconducting gap parameter
on our results.Comment: 23 pages, 8 figs; v2: 25 pages, 9 figs, version to be published in
Phys. Rev. (D
Holographic Meson Melting
The plasma phase at high temperatures of a strongly coupled gauge theory can
be holographically modelled by an AdS black hole. Matter in the fundamental
representation and in the quenched approximation is introduced through
embedding D7-branes in the AdS-Schwarzschild background. Low spin mesons
correspond to the fluctuations of the D7-brane world volume. As is well known
by now, there are two different kinds of embeddings, either reaching down to
the black hole horizon or staying outside of it. In the latter case the
fluctuations of the D7-brane world volume represent stable low spin mesons. In
the plasma phase we do not expect mesons to be stable but to melt at
sufficiently high temperature. We model the late stages of this meson melting
by the quasinormal modes of D7-brane fluctuations for the embeddings that do
reach down to the horizon. The inverse of the imaginary part of the quasinormal
frequency gives the typical relaxation time back to equilibrium of the meson
perturbation in the hot plasma. We briefly comment on the possible application
of our model to quarkonium suppression.Comment: 25+1 pages, 6 figures; v4: references adde
Search for varying constants of nature from astronomical observation of molecules
The status of searches for possible variation in the constants of nature from
astronomical observation of molecules is reviewed, focusing on the
dimensionless constant representing the proton-electron mass ratio
. The optical detection of H and CO molecules with large
ground-based telescopes (as the ESO-VLT and the Keck telescopes), as well as
the detection of H with the Cosmic Origins Spectrograph aboard the Hubble
Space Telescope is discussed in the context of varying constants, and in
connection to different theoretical scenarios. Radio astronomy provides an
alternative search strategy bearing the advantage that molecules as NH
(ammonia) and CHOH (methanol) can be used, which are much more sensitive to
a varying than diatomic molecules. Current constraints are
for redshift , corresponding to
look-back times of 10-12.5 Gyrs, and for
, corresponding to half the age of the Universe (both at 3
statistical significance). Existing bottlenecks and prospects for future
improvement with novel instrumentation are discussed.Comment: Contribution to Workshop "High Performance Clocks in Space" at the
International Space Science Institute, Bern 201
Strange nucleon form factors in the perturbative chiral quark model
We apply the perturbative chiral quark model at one loop to calculate the
strange form factors of the nucleon. A detailed numerical analysis of the
strange magnetic moments and radii of the nucleon, and also the momentum
dependence of the form factors is presented.Comment: 18 pages, 6 figure
Instability, Intermixing and Electronic Structure at the Epitaxial LaAlO3/SrTiO3(001) Heterojunction
The question of stability against diffusional mixing at the prototypical
LaAlO3/SrTiO3(001) interface is explored using a multi-faceted experimental and
theoretical approach. We combine analytical methods with a range of
sensitivities to elemental concentrations and spatial separations to
investigate interfaces grown using on-axis pulsed laser deposition. We also
employ computational modeling based on the density function theory as well as
classical force fields to explore the energetic stability of a wide variety of
intermixed atomic configurations relative to the idealized, atomically abrupt
model. Statistical analysis of the calculated energies for the various
configurations is used to elucidate the relative thermodynamic stability of
intermixed and abrupt configurations. We find that on both experimental and
theoretical fronts, the tendency toward intermixing is very strong. We have
also measured and calculated key electronic properties such as the presence of
electric fields and the value of the valence band discontinuity at the
interface. We find no measurable electric field in either the LaAlO3 or SrTiO3,
and that the valence band offset is near zero, partitioning the band
discontinuity almost entirely to the conduction band edge. Moreover, we find
that it is not possible to account for these electronic properties
theoretically without including extensive intermixing in our physical model of
the interface. The atomic configurations which give the greatest electrostatic
stability are those that eliminate the interface dipole by intermixing, calling
into question the conventional explanation for conductivity at this interface -
electronic reconstruction. Rather, evidence is presented for La indiffusion and
doping of the SrTiO3 below the interface as being the cause of the observed
conductivity
Beautiful Mirrors and Precision Electroweak Data
The Standard Model (SM) with a light Higgs boson provides a very good
description of the precision electroweak observable data coming from the LEP,
SLD and Tevatron experiments. Most of the observables, with the notable
exception of the forward-backward asymmetry of the bottom quark, point towards
a Higgs mass far below its current experimental bound. The disagreement, within
the SM, between the values for the weak mixing angle as obtained from the
measurement of the leptonic and hadronic asymmetries at lepton colliders, may
be taken to indicate new physics contributions to the precision electroweak
observables. In this article we investigate the possibility that the inclusion
of additional bottom-like quarks could help resolve this discrepancy. Two
inequivalent assignments for these new quarks are analysed. The resultant fits
to the electroweak data show a significant improvement when compared to that
obtained in the SM. While in one of the examples analyzed, the exotic quarks
are predicted to be light, with masses below 300 GeV, and the Higgs tends to be
heavy, in the second one the Higgs is predicted to be light, with a mass below
250 GeV, while the quarks tend to be heavy, with masses of about 800 GeV. The
collider signatures associated with the new exotic quarks, as well as the
question of unification of couplings within these models and a possible
cosmological implication of the new physical degrees of freedom at the weak
scale are also discussed.Comment: 21 pages, 4 embedded postscript figures, LaTeX. Two minor corrections
performe
- …