822 research outputs found

    Phytophthora taxa associated with cultivated Agathosma, with emphasis on the P. citricola complex and P. capensis sp. nov.

    Get PDF
    Agathosma species, which are indigenous to South Africa, are also cultivated for commercial use. Recently growers experienced severe plant loss, and symptoms shown by affected plants suggested that a soilborne disease could be the cause of death. A number of Phytophthora taxa were isolated from diseased plants, and this paper reports their identity, mating type, and pathogenicity to young Agathosma plants. Using morphological and sequence data seven Phytophthora taxa were identified: the A1 mating type of P. cinnamomi var. cinnamomi, P. cinnamomi var. parvispora and P. cryptogea, the A2 mating type of P. drechsleri and P. nicotianae, and two homothallic taxa from the P. citricola complex. The identity of isolates in the P. citricola complex was resolved using reference isolates of P. citricola CIT groups 1 to 5 sensu Oudemans et al. (1994) along with multi-locus phylogenies (three nuclear and two mitochondrial regions), isozyme analyses, morphological characteristics and temperature-growth studies. These analyses revealed the isolates from Agathosma to include P. multivora and a putative novel species, P. taxon emzansi. Furthermore, among the P. citricola reference isolates the presence of a new species was revealed, described here as P. capensis. Findings of our study, along with some recent other studies, have contributed to resolving some of the species complexity within the P. citricola complex, resulting in the identification of a number of phylogenetically distinct taxa. The pathogenicity of representative isolates of the taxa from Agathosma was tested on A. betulina seedlings. The putative novel species, P. taxon emzansi, and P. cinnamomi var. parvispora were non-pathogenic, whereas the other species were pathogenic to this host

    Altered precipitation and root herbivory affect the productivity and composition of a mesic grassland

    Get PDF
    Background Climate change models predict changes in the amount, frequency and seasonality of precipitation events, all of which have the potential to affect the structure and function of grassland ecosystems. While previous studies have examined plant or herbivore responses to these perturbations, few have examined their interactions; even fewer have included belowground herbivores. Given the ecological, economic and biodiversity value of grasslands, and their importance globally for carbon storage and agriculture, this is an important knowledge gap. To address this, we conducted a precipitation manipulation experiment in a former mesic pasture grassland comprising a mixture of C-4 grasses and C-3 grasses and forbs, in southeast Australia. Rainfall treatments included a control [ambient], reduced amount [50% ambient] and reduced frequency [ambient rainfall withheld for three weeks, then applied as a single deluge event] manipulations, to simulate predicted changes in both the size and frequency of future rainfall events. In addition, half of all experimental plots were inoculated with adult root herbivores (Scarabaeidae beetles). Results We found strong seasonal dependence in plant community responses to both rainfall and root herbivore treatments. The largest effects were seen in the cool season with lower productivity, cover and diversity in rainfall-manipulated plots, while root herbivore inoculation increased the relative abundance of C-3, compared to C-4, plants. Conclusions This study highlights the importance of considering not only the seasonality of plant responses to altered rainfall, but also the important role of interactions between abiotic and biotic drivers of vegetation change when evaluating ecosystem-level responses to future shifts in climatic conditions.This work was partially supported by a Higher Degree Research Scholarship from the Hawkesbury Institute for the Environment at Western Sydney University. Additional funding came from a project grant to SAP and SNJ from the Hermon Slade Foundation (P00021516) and funding provided by Western Sydney University. The Western Sydney University Library provided financial assistance for open access publication fees. Documen

    Non-destructive, dynamic detectors for Bose-Einstein condensates

    Full text link
    We propose and analyze a series of non-destructive, dynamic detectors for Bose-Einstein condensates based on photo-detectors operating at the shot noise limit. These detectors are compatible with real time feedback to the condensate. The signal to noise ratio of different detection schemes are compared subject to the constraint of minimal heating due to photon absorption and spontaneous emission. This constraint leads to different optimal operating points for interference-based schemes. We find the somewhat counter-intuitive result that without the presence of a cavity, interferometry causes as much destruction as absorption for optically thin clouds. For optically thick clouds, cavity-free interferometry is superior to absorption, but it still cannot be made arbitrarily non-destructive . We propose a cavity-based measurement of atomic density which can in principle be made arbitrarily non-destructive for a given signal to noise ratio

    Quiescence near the X-point of MAST measured by high speed visible imaging

    Get PDF
    Using high speed imaging of the divertor volume, the region close to the X-point in MAST is shown to be quiescent. This is confirmed by three different analysis techniques and the quiescent X-point region (QXR) spans from the separatrix to the ψ N = 1 . 02 flux surface. Local reductions to the atomic density and effects associated with the camera viewing geometry are ruled out as causes of the QXR, leaving quiescence in the local plasma conditions as being the most likely cause. The QXR is found to be ubiquitous across a significant operational space in MAST including L-mode and H-mode discharges across maximal ranges of 9 . 8 × 10 19 m − 2 in line integrated density, 0 . 36MA in plasma current, 0 . 11T in toroidal magnetic field and 3 . 2MW in NBI power. When mapped to the divertor target the QXR occupies approximately an e-folding length of the heat-flux profile, containing ∼ 60% of the total heat flux to the target, and also shows a tendency towards higher frequency shorter lived fluctuations in the ion-saturation current. This is consistent with short- lived divertor localised filamentary structures observed further down the outer divertor leg in the camera images, and suggests a complex multi-region picture of filamentary transport in the divertor

    A study of the centrally produced baryon-antibaryon systems in pp interactions at 450 GeV/c

    Get PDF
    A study of the centrally produced ppbar, ppbarpi, ppbarpipi and lambda lambda channels has been performed in pp collisions using an incident beam momentum of 450 GeV/c. No significant new structures are observed in the mass spectra, however, important new information on the production dynamics is obtained. A systematic study of the production properties of these systems has been performed and it is found that these systems are not produced dominantly by double Pomeron exchange.Comment: 13 pages, Latex, 4 Figure

    A study of pseudoscalar states produced centrally in pp interactions at 450 GeV/c

    Get PDF
    A study has been made of pseudoscalar mesons produced centrally in pp interactions. The results show that the eta and etaprime appear to have a similar production mechanism which differs from that of the pi0. The production properties of the eta and etaprime are not consistent with what is expected from double Pomeron exchange. In addition the production mechanism for the eta and etaprime is such that the production cross section are greatest when the azimuthal angle between the pT vectors of the two protons is 90 degrees.Comment: 11 pages, Latex, 3 Figure

    A partial wave analysis of the centrally produced K+K- and K0K0 systems in pp interactions at 450 GeV/c and new information on the spin of the fJ(1710)

    Get PDF
    A partial wave analysis of the centrally produced K+K- and K0K0 channels has been performed in pp collisions using an incident beam momentum of 450 GeV/c. An unambiguous physical solution has been found in each channel. The striking feature is the observation of peaks in the S-wave corresponding to the f0(1500) and fJ(1710) with J = 0. The D-wave shows evidence for the f2(1270)/a2(1320), the f2(1525) and the f2(2150) but there is no evidence for a statistically significant contribution in the D-wave in the 1.7 GeV mass region.Comment: 15 pages, Latex, 5 Figure
    corecore