86 research outputs found
Energy levels and lifetimes of Nd IV, Pm IV, Sm IV, and Eu IV
To address the shortage of experimental data for electron spectra of
triply-ionized rare earth elements we have calculated energy levels and
lifetimes of 4f{n+1} and 4f{n}5d configurations of Nd IV (n=2), Pm IV (n=3), Sm
IV (n=4), and Eu IV (n=5) using Hartree-Fock and configuration interaction
methods. To control the accuracy of our calculations we also performed similar
calculations for Pr III, Nd III and Sm III, for which experimental data are
available. The results are important, in particular, for physics of magnetic
garnets.Comment: 4 pages 1 tabl
Off-Diagonal Hyperfine Interaction and Parity Non-conservation in Cesium
We have performed relativistic many-body calculations of the hyperfine
interaction in the and states of Cs, including the off-diagonal
matrix element. The calculations were used to determine the accuracy of the
semi-empirical formula for the electromagnetic transition amplitude
induced by the hyperfine interaction. We have found that even
though the contribution of the many-body effects into the matrix elements is
very large, the square root formula remains valid to the accuracy of a fraction of .
The result for the M1-amplitude is used in the interpretation of the
parity-violation measurement in the transition in Cs which claims a
possible deviation from the Standard model.Comment: 13 pages, 4 figures, LaTeX, Submitted to Phys. Rev.
Measurement of the 6s - 7p transition probabilities in atomic cesium and a revised value for the weak charge Q_W
We have measured the 6s - 7p_{1/2,3/2} transition probabilities in atomic
cesium using a direct absorption technique. We use our result plus other
previously measured transition rates to derive an accurate value of the vector
transition polarizability \beta and, consequently, re-evaluate the weak charge
Q_W. Our derived value Q_W=-72.65(49) agrees with the prediction of the
standard model to within one standard deviation.Comment: 4 pages, 2 figure
Calculations of parity nonconserving s-d transitions in Cs, Fr, Ba II, and Ra II
We have performed ab initio mixed-states and sum-over-states calculations of
parity nonconserving (PNC) electric dipole (E1) transition amplitudes between
s-d electron states of Cs, Fr, Ba II, and Ra II. For the lower states of these
atoms we have also calculated energies, E1 transition amplitudes, and
lifetimes. We have shown that PNC E1 transition amplitudes between s-d states
can be calculated to high accuracy. Contrary to the Cs 6s-7s transition, in
these transitions there are no strong cancelations between different terms in
the sum-over-states approach. In fact, there is one dominating term which
deviates from the sum by less than 20%. This term corresponds to an s-p_{1/2}
weak matrix element, which can be calculated to better than 1%, and a
p_{1/2}-d_{3/2} E1 transition amplitude, which can be measured. Also, the s-d
amplitudes are about four times larger than the corresponding s-s transitions.
We have shown that by using a hybrid mixed-states/sum-over-states approach the
accuracy of the calculations of PNC s-d amplitudes could compete with that of
Cs 6s-7s if p_{1/2}-d_{3/2} E1 amplitudes are measured to high accuracy.Comment: 15 pages, 8 figures, submitted to Phys. Rev.
Calculation of parity and time invariance violation in the radium atom
Parity (P) and time (T) invariance violating effects in the Ra atom are
strongly enhanced due to close states of opposite parity, the large nuclear
charge Z and the collective nature of P,T-odd nuclear moments. We have
performed calculations of the atomic electric dipole moments (EDM) produced by
the electron EDM and the nuclear magnetic quadrupole and Schiff moments. We
have also calculated the effects of parity non-conservation produced by the
nuclear anapole moment and the weak charge. Our results show that as a rule the
values of these effects are much larger than those considered so far in other
atoms (enhancement is up to 10^5 times).Comment: 18 pages; LaTeX; Submitted to Phys. Rev.
Light-induced structural changes in photosynthetic reaction centres studied by ESEEM of spin-correlated D+QAâ radical pairs
AbstractZn-substituted Rhodobacter sphaeroides R26 reaction centres (RCs) frozen in the dark and under illumination exhibit quite different recombination kinetics of the D+QAâ radical pairs [Kleinfeld et al., Biochemistry, 23 (1984) 5780]. We have applied electron spin echo envelope modulation (ESEEM) of the spin-correlated D+QAâ radical pairs to assess a possible light-induced change in the distance between the D and QA cofactors. The recombination kinetics and the field-swept spin-polarized EPR signal for the two preparations have been monitored by time-resolved EPR spectroscopy. For the samples frozen under illumination, a slight increase in the distance, 0.4±0.2 Ă
, has been detected
Parity nonconservation in heavy atoms: The radiative correction enhanced by the strong electric field of the nucleus
Parity nonconservation due to the nuclear weak charge is considered. We
demonstrate that the radiative corrections to this effect due to the vacuum
fluctuations of the characteristic size larger than the nuclear radius
and smaller than the electron Compton wave-length are enhanced
because of the strong electric field of the nucleus. The parameter that allows
one to classify the corrections is the large logarithm .
The vacuum polarization contribution is enhanced by the second power of the
logarithm. Although the self-energy and the vertex corrections do not vanish,
they contain only the first power of the logarithm. The value of the radiative
correction is 0.4% for Cs and 0.9% for Tl, Pb, and Bi. We discuss also how the
correction affects the interpretation of the experimental data on parity
nonconservation in atoms.Comment: 4 pages, 3 figures, RevTe
Precise calculation of parity nonconservation in cesium and test of the standard model
We have calculated the 6s-7s parity nonconserving (PNC) E1 transition
amplitude, E_{PNC}, in cesium. We have used an improved all-order technique in
the calculation of the correlations and have included all significant
contributions to E_{PNC}. Our final value E_{PNC} = 0.904 (1 +/- 0.5 %) \times
10^{-11}iea_{B}(-Q_{W}/N) has half the uncertainty claimed in old calculations
used for the interpretation of Cs PNC experiments. The resulting nuclear weak
charge Q_{W} for Cs deviates by about 2 standard deviations from the value
predicted by the standard model.Comment: 24 pages, 8 figure
E1 amplitudes, lifetimes, and polarizabilities of the low-lying levels of atomic ytterbium
The results of ab initio calculation of E1 amplitudes, lifetimes,and
polarizabilities for several low-lying levels of ytterbium are reported. The
effective Hamiltonian for the valence electrons has been constructed in the
frame of CI+MBPT method and solutions of many electron equation are found.Comment: 11 pages, submitted to Phys.Rev.
Isotope shift calculations for atoms with one valence electron
This work presents a method for the ab initio calculation of isotope shift in
atoms and ions with one valence electron above closed shells. As a zero
approximation we use relativistic Hartree-Fock and then calculate correlation
corrections. The main motivation for developing the method comes from the need
to analyse whether different isotope abundances in early universe can
contribute to the observed anomalies in quasar absorption spectra. The current
best explanation for these anomalies is the assumption that the fine structure
constant, alpha, was smaller at early epoch. We test the isotope shift method
by comparing the calculated and experimental isotope shift for the alkali and
alkali-like atoms Na, MgII, K, CaII and BaII. The agreement is found to be
good. We then calculate the isotope shift for some astronomically relevant
transitions in SiII and SiIV, MgII, ZnII and GeII.Comment: 11 page
- âŠ