153,322 research outputs found
A Meandering Inflaton
If the cosmological inflationary scenario took place in the cosmic landscape
in string theory, the inflaton, the scalar mode responsible for inflation,
would have meandered in a complicated multi-dimensional potential. We show that
this meandering property naturally leads to many e-folds of inflation, a
necessary condition for a successful inflationary scenario. This behavior also
leads to fluctuations in the primordial power spectrum of the cosmic microwave
background radiation, which may be detected in a near future cosmic variance
limited experiment like PLANCK.Comment: minor additions, matched to published versio
Energy levels of a parabolically confined quantum dot in the presence of spin-orbit interaction
We present a theoretical study of the energy levels in a parabolically
confined quantum dot in the presence of the Rashba spin-orbit interaction
(SOI). The features of some low-lying states in various strengths of the SOI
are examined at finite magnetic fields. The presence of a magnetic field
enhances the possibility of the spin polarization and the SOI leads to
different energy dependence on magnetic fields applied. Furthermore, in high
magnetic fields, the spectra of low-lying states show basic features of
Fock-Darwin levels as well as Landau levels.Comment: 6 pages, 4 figures, accepted by J. Appl. Phy
Spectrum of low-lying configurations with negative parity
Spectrum of low-lying five-quark configurations with strangeness quantum
number and negative parity is studied in three kinds of constituent
quark models, namely the one gluon exchange, Goldstone Boson exchange, and
instanton-induced hyperfine interaction models, respectively. Our numerical
results show that the lowest energy states in all the three employed models are
lying at 1800 MeV, about 200 MeV lower than predictions of various
quenched three-quark models. In addition, it is very interesting that the state
with the lowest energy in one gluon exchange model is with spin 3/2, but 1/2 in
the other two models.Comment: Version published in Phys. Rev.
Dynamic Topology Adaptation Based on Adaptive Link Selection Algorithms for Distributed Estimation
This paper presents adaptive link selection algorithms for distributed
estimation and considers their application to wireless sensor networks and
smart grids. In particular, exhaustive search--based
least--mean--squares(LMS)/recursive least squares(RLS) link selection
algorithms and sparsity--inspired LMS/RLS link selection algorithms that can
exploit the topology of networks with poor--quality links are considered. The
proposed link selection algorithms are then analyzed in terms of their
stability, steady--state and tracking performance, and computational
complexity. In comparison with existing centralized or distributed estimation
strategies, key features of the proposed algorithms are: 1) more accurate
estimates and faster convergence speed can be obtained; and 2) the network is
equipped with the ability of link selection that can circumvent link failures
and improve the estimation performance. The performance of the proposed
algorithms for distributed estimation is illustrated via simulations in
applications of wireless sensor networks and smart grids.Comment: 14 figure
- …