11,661 research outputs found
Inverted polymer fullerene solar cells exceeding 10% efficiency with poly(2-ethyl-2-oxazoline) nanodots on electron-collecting buffer layers
Polymer solar cells have been spotlighted due to their potential for low-cost manufacturing but their efficiency is still less than required for commercial application as lightweight/flexible modules. Forming a dipole layer at the electron-collecting interface has been suggested as one of the more attractive approaches for efficiency enhancement. However, only a few dipole layer material types have been reported so far, including only one non-ionic (charge neutral) polymer. Here we show that a further neutral polymer, namely poly(2-ethyl-2-oxazoline) (PEOz) can be successfully used as a dipole layer. Inclusion of a PEOz layer, in particular with a nanodot morphology, increases the effective work function at the electron-collecting interface within inverted solar cells and thermal annealing of PEOz layer leads to a state-of-the-art 10.74% efficiency for single-stack bulk heterojunction blend structures comprising poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] as donor and [6,6]-phenyl-C71-butyric acid methyl ester as acceptor
COMPARISON BETWEEN EMG-ASSISTED AND EMG-ASSISTED OPTIMIZATION MODELS IN TERMS OF ESTIMATING LUMBAR SPINAL LOADS DURING A GOLF SWING
This study compared two different models that were required for the computation of the lumbar spinal loads during a golf swing. Simple scaling and optimization techniques were used to modify the initial muscle forces obtained by the EMG-based model such that the condition for moment equilibrium was met. The results indicated that the discrepancies occurred in lumbar spinal loads estimated by the EMG-assisted (EMGA) and EMG-assisted optimization (EMGAO) models due to the differences in gain values obtained by these models. Unlike the EMGA model, the EMGAO model attempted to find optimized gain values for individual muscles. The EMGAO model not only satisfied the moment equilibrium conditions but also determined final muscle forces within a realistic range. Therefore, the EMGAO model would be superior to the EMGA model in terms of muscle force prediction or lumbar spinal loads estimation
Charge states and magnetic ordering in LaMnO3/SrTiO3 superlattices
We investigated the magnetic and optical properties of
[(LaMnO3)n/(SrTiO3)8]20 (n = 1, 2, and 8) superlattices grown by pulsed laser
deposition. We found a weak ferromagnetic and semiconducting state developed in
all superlattices. An analysis of the optical conductivity showed that the
LaMnO3 layers in the superlattices were slightly doped. The amount of doping
was almost identical regardless of the LaMnO3 layer thickness up to eight unit
cells, suggesting that the effect is not limited to the interface. On the other
hand, the magnetic ordering became less stable as the LaMnO3 layer thickness
decreased, probably due to a dimensional effect.Comment: 17 pages including 4 figures, accepted for publication in Phys. Rev.
Evidence of metallic clustering in annealed Ga1-xMnxAs from atypical scaling behavior of the anomalous Hall coefficient
We report on the anomalous Hall coefficient and longitudinal resistivity
scaling relationships on a series of annealed Ga1-xMnxAs epilayers (x~0.055).
As-grown samples exhibit scaling parameter n of ~ 1. Near the optimal annealing
temperature, we find n ~ 2 to be consistent with recent theories on the
intrinsic origins of anomalous Hall Effect in Ga1-xMnxAs. For annealing
temperatures far above the optimum, we note n > 3, similar behavior to certain
inhomogeneous systems. This observation of atypical behavior agrees well with
characteristic features attributable to spherical resonance from metallic
inclusions from optical spectroscopy measurements.Comment: 3 pages, 3 figure
Interplay between carrier and impurity concentrations in annealed GaMnAs intrinsic anomalous Hall Effect
Investigating the scaling behavior of annealed GaMnAs anomalous
Hall coefficients, we note a universal crossover regime where the scaling
behavior changes from quadratic to linear, attributed to the anomalous Hall
Effect intrinsic and extrinsic origins, respectively. Furthermore, measured
anomalous Hall conductivities when properly scaled by carrier concentration
remain constant, equal to theoretically predicated values, spanning nearly a
decade in conductivity as well as over 100 K in T. Both the qualitative
and quantitative agreement confirms the validity of new equations of motion
including the Berry phase contributions as well as tunablility of the intrinsic
anomalous Hall Effect.Comment: 4 pages, 5 figure
CELNet: Evidence Localization for Pathology Images using Weakly Supervised Learning
Despite deep convolutional neural networks boost the performance of image
classification and segmentation in digital pathology analysis, they are usually
weak in interpretability for clinical applications or require heavy annotations
to achieve object localization. To overcome this problem, we propose a weakly
supervised learning-based approach that can effectively learn to localize the
discriminative evidence for a diagnostic label from weakly labeled training
data. Experimental results show that our proposed method can reliably pinpoint
the location of cancerous evidence supporting the decision of interest, while
still achieving a competitive performance on glimpse-level and slide-level
histopathologic cancer detection tasks.Comment: Accepted for MICCAI 201
Aquaporin 1a Expression in Gill, Intestine, and Kidney of the Euryhaline Silver Sea Bream
This study aimed to investigate the effects of chronic salinity acclimation, abrupt salinity transfer, and cortisol administration on aquaporin 1 (AQP1) expression in gill, intestine, and kidney of silver sea bream (Sparus sarba). An AQP1a cDNA was cloned and found to share 83–96% amino acid sequence identity with AQP1 genes from several fish species. Tissue distribution studies of AQP1a mRNA demonstrated that it was expressed in gill, liver, intestine, rectum, kidney, heart, urinary bladder, and whole blood. Semi-quantitative RT-PCR analysis was used to measure AQP1a transcript abundance in sea bream that were acclimated to salinity conditions of 0, 6, 12, 33, 50, and 70 ppt for 1 month. The abundance of gill AQP1a transcript was highest in sea bream acclimated to 0 ppt whereas no differences were found among 0–50 ppt groups. For intestine, the highest AQP1a transcript amounts were found in sea bream acclimated to 12 and 70 ppt whereas the transcript abundance of kidney AQP1a was found to be unchanged amongst the different salinity groups. To investigate the effects of acute salinity alterations on AQP1a expression, sea bream were abruptly transferred from 33 to 6 ppt. For intestine AQP1a levels were altered at different times, post transfer, but remained unchanged in gill and kidney. To study the effects of cortisol on AQP1a expression, sea bream were administered a single dose of cortisol followed by a 3-day acclimation to either 33 or 6 ppt. The findings from this experiment demonstrated that cortisol administration resulted in alterations of AQP1a transcript in gill and intestine but not in kidney
- …