5,962 research outputs found

    Nonfrustrated magnetoelectric with incommensurate magnetic order in magnetic field

    Full text link
    We discuss a model nonfrustrated magnetoelectric in which strong enough magnetoelectric coupling produces incommensurate magnetic order leading to ferroelectricity. Properties of the magnetoelectric in magnetic field directed perpendicular to wave vector describing the spin helix are considered in detail. Analysis of classical energy shows that in contrast to naive expectation the onset of ferroelectricity takes place at a field Hc1H_{c1} that is lower than the saturation field Hc2H_{c2}. One has Hc1=Hc2H_{c1}=H_{c2} at strong enough magnetoelectric coupling. We show that at H=0 the ferroelectricity appears at T=TFE<TNT=T_{FE}<T_N. Qualitative discussion of phase diagram in HTH-T plane is presented within mean field approach.Comment: 12 pages, 3 figures, accepted in JET

    Uncorrelated and correlated nanoscale lattice distortions in the paramagnetic phase of magnetoresistive manganites

    Full text link
    Neutron scattering measurements on a magnetoresistive manganite La0.75_{0.75}(Ca0.45_{0.45}Sr0.55_{0.55})0.25_{0.25}MnO3_3 show that uncorrelated dynamic polaronic lattice distortions are present in both the orthorhombic (O) and rhombohedral (R) paramagnetic phases. The uncorrelated distortions do not exhibit any significant anomaly at the O-to-R transition. Thus, both the paramagnetic phases are inhomogeneous on the nanometer scale, as confirmed further by strong damping of the acoustic phonons and by the anomalous Debye-Waller factors in these phases. In contrast, recent x-ray measurements and our neutron data show that polaronic correlations are present only in the O phase. In optimally doped manganites, the R phase is metallic, while the O paramagnetic state is insulating (or semiconducting). These measurements therefore strongly suggest that the {\it correlated} lattice distortions are primarily responsible for the insulating character of the paramagnetic state in magnetoresistive manganites.Comment: 10 pages, 8 figures embedde
    corecore