287 research outputs found

    Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (10 22 W/cm 2 )

    Full text link
    We describe a method to measure the aberrations of a high numerical aperture off-axis paraboloid and correct for the aberrations using adaptive optics. It is then shown that the characterized aberrations can be used to accurately calculate the electromagnetic field at the focus using the Stratton–Chu vector diffraction theory. Using this methodology, an intensity of 7×10 21 W/cm 2 was demonstrated by focusing a 45-TW laser beam with an f /0.6, 90 ∘ off-axis paraboloid after correcting the aberrations of the paraboloid and the low-energy reference beam. The intensity can be further increased to 1×10 22 W/cm 2 by including in the correction algorithm the wavefront difference between the reference beam and the high-energy beam.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47049/1/340_2005_Article_1803.pd

    A decentralized spectrum allocation and partitioning scheme for a two-tier macro-femtocell network with downlink beamforming

    Get PDF
    This article examines spectrum allocation and partitioning schemes to mitigate cross-tier interference under downlink beamforming environments. The enhanced SIR owing to beamforming allows more femtocells to share their spectrum with the macrocell and accordingly improves overall spectrum efficiency. We first design a simplified centralized scheme as the optimum and then propose a practical decentralized algorithm that determines which femtocells to use the full or partitioned spectrum with acceptable control overhead. To exploit limited information of the received signal strength efficiently, we consider two types of probabilistic femtocell base station (HeNB) selection policies. They are equal selection and interference weighted selection policies, and we drive their outage probabilities for a macrocell user. Through performance evaluation, we demonstrate that the outage probability and the cell capacity in our decentralized scheme are significantly better than those in a conventional cochannel deployment scheme. Furthermore, we show that the cell utility in our proposed scheme is close to that in the centralized scheme and better than that in the spectrum partitioning scheme with a fixed ratio.open0

    One-dimensional steady-state structures at relativistic interaction of laser radiation with overdense plasma for finite electron temperature

    Full text link
    One-dimensional steady-state plasma-field structures in overdense plasma are studied assuming that the electron temperature is uniform over plasma bulk and the ions are stationary. It is shown that there may exist solutions for electron distributions with cavitation regions in plasma under the action of ponderomotive forceComment: 6 pages, 4 figure

    Quantum Vacuum Experiments Using High Intensity Lasers

    Full text link
    The quantum vacuum constitutes a fascinating medium of study, in particular since near-future laser facilities will be able to probe the nonlinear nature of this vacuum. There has been a large number of proposed tests of the low-energy, high intensity regime of quantum electrodynamics (QED) where the nonlinear aspects of the electromagnetic vacuum comes into play, and we will here give a short description of some of these. Such studies can shed light, not only on the validity of QED, but also on certain aspects of nonperturbative effects, and thus also give insights for quantum field theories in general.Comment: 9 pages, 8 figur
    • 

    corecore