22,281 research outputs found
Backward Raman compression of x-rays in metals and warm dense matters
Experimentally observed decay rate of the long wavelength Langmuir wave in
metals and dense plasmas is orders of magnitude larger than the prediction of
the prevalent Landau damping theory. The discrepancy is explored, and the
existence of a regime where the forward Raman scattering is stable and the
backward Raman scattering is unstable is examined. The amplification of an
x-ray pulse in this regime, via the backward Raman compression, is
computationally demonstrated, and the optimal pulse duration and intensity is
estimated.Comment: 4 pages, 3 figures, submitted to PR
Theory of plasmon decay in dense plasmas and warm dense matter
The decay of the Langmuir waves in dense plasmas is not accurately predicted
by the prevalent Landau damping theory. A dielectric function theory is
introduced, predicting much higher damping than the Landau damping theory. This
strong damping is in better agreement with the experimentally observed data in
metals. It is shown that the strong plasmon decay leads to the existence of a
parameter regime where the backward Raman scattering is unstable while the
forward Raman scattering is stable. This regime may be used to create intense
x-ray pulses, by means of the the backward Raman compression. The optimal pulse
duration and intensity is estimated
Photonic band gap and x-ray optics in warm dense matter
Photonic band gaps for the soft x-rays, formed in the periodic structures of
solids or dense plasmas, are theoretically investigated. Optical manipulation
mechanisms for the soft x-rays, which are based on these band gaps, are
computationally demonstrated. The reflection and amplification of the soft
x-rays, and the compression and stretching of chirped soft x-ray pulses are
discussed. A scheme for lasing with atoms with two energy levels, utilizing the
band gap, is also studied.Comment: 3 figures, will be published on Po
X-ray Raman compression via two-stream instability in dense plasmas
A Raman compression scheme suitable for x-rays, where the Langmuir wave is
created by an intense beam rather than the pondermotive potential between the
seed and pump pulses, is proposed.
The required intensity of the seed and pump pulses enabling the compression
could be mitigated by more than a factor of 100, compared to conventionally
available other Raman compression schemes. The relevant wavelength of x-rays
ranges from 1 to 10 nm
Development and application of a self-referencing glucose microsensor for the measurement of glucose consumption by pancreatic ?-cells
Glucose gradients generated by an artificial source and ?-cells were measured using an enzyme-based glucose microsensor, 8-?m tip diameter, as a self-referencing electrode. The technique is based on a difference measurement between two locations in a gradient and thus allows us to obtain real-time flux values with minimal impact of sensor drift or noise. Flux values were derived by incorporation of the measured differential current into Fick's first equation. In an artificial glucose gradient, a flux detection limit of 8.2 ± 0.4 pmol·cm-2·s-1 (mean ± SEM, n = 7) with a sensor sensitivity of 7.0 ± 0.4 pA/mM (mean ± SEM, n = 16) was demonstrated. Under biological conditions, the glucose sensor showed no oxygen dependence with 5 mM glucose in the bulk medium. The addition of catalase to the bulk medium was shown to ameliorate surface-dependent flux distortion close to specimens, suggesting an underlying local accumulation of hydrogen peroxide. Glucose flux from ?-cell clusters, measured in the presence of 5 mM glucose, was 61.7 ± 9.5 fmol·nL-1·s-1 (mean ± SEM, n = 9) and could be pharmacologically modulated. Glucose consumption in response to FCCP (1 ?M) transiently increased, subsequently decreasing to below basal by 93 ± 16 and 56 ± 6%, respectively (mean ± SEM, n = 5). Consumption was decreased after the application of 10 ?M rotenone by 74 ± 5% (mean ± SEM, n = 4). These results demonstrate that an enzyme-based amperometric microsensor can be applied in the self-referencing mode. Further, in obtaining glucose flux measurements from small clusters of cells, these are the first recordings of the real-time dynamic of glucose movements in a biological microenvironment. <br/
Robustness of multiparty nonlocality to local decoherence
We investigate the robustness of multiparty nonlocality under local
decoherence, acting independently and equally on each subsystems. To be
specific, we consider an N-qubit GHZ state under depolarization, dephasing, or
dissipation channel, and tested the nonlocality by violation of Mermin-Klyshko
inequality, which is one of Bell's inequalities for multi-qubit systems. The
results show that the robustness of nonlocality increases with the number of
qubits, and that the nonlocality of an N-qubit GHZ state with even N is
extremely persistent against dephasing.Comment: 5 pages, 4 figure
Surface-Enhanced Plasmon Splitting in a Liquid-Crystal-Coated Gold Nanoparticle
We show that, when a gold nanoparticle is coated by a thin layer of nematic
liquid crystal, the deformation produced by the nanoparticle surface can
enhance the splitting of the nanoparticle surface plasmon. We consider three
plausible liquid crystal director configurations in zero electric field: boojum
pair (north-south pole configuration), baseball (tetrahedral), and homogeneous.
From a calculation using the Discrete Dipole Approximation, we find that the
surface plasmon splitting is largest for the boojum pair, intermediate for the
homogeneous, and smallest for the baseball configuration. The boojum pair
results are in good agreement with experiment. We conclude that the
nanoparticle surface has a strong effect on the director orientation, but,
surprisingly, that this deformation can actually enhance the surface plasmon
splitting.Comment: 5 pages, 3 figures To be published in PR
Patterns of Striped order in the Classical Lattice Coulomb Gas
We obtain via Monte Carlo simulations the low temperature charge
configurations in the lattice Coulomb gas on square lattices for charge filling
ratio in the range . We find a simple regularity in the low
temperature charge configurations which consist of a suitable periodic
combination of a few basic striped patterns characterized by the existence of
partially filled diagonal channels. In general there exist two separate
transitions where the lower temperature transition () corresponds to the
freezing of charges within the partially filled channels. is found to be
sensitively dependent on through the charge number density within the channels.Comment: 4 pages, 8 figure
- …