13,839 research outputs found
Local structure of In_(0.5)Ga_(0.5)As from joint high-resolution and differential pair distribution function analysis
High resolution total and indium differential atomic pair distribution
functions (PDFs) for In_(0.5)Ga_(0.5)As alloys have been obtained by high
energy and anomalous x-ray diffraction experiments, respectively. The first
peak in the total PDF is resolved as a doublet due to the presence of two
distinct bond lengths, In-As and Ga-As. The In differential PDF, which involves
only atomic pairs containing In, yields chemical specific information and helps
ease the structure data interpretation. Both PDFs have been fit with structure
models and the way in that the underlying cubic zinc-blende lattice of
In_(0.5)Ga_(0.5)As semiconductor alloy distorts locally to accommodate the
distinct In-As and Ga-As bond lengths present has been quantified.Comment: 9 pages, 7 figur
Reevaluation of Neutron Electric Dipole Moment with QCD Sum Rules
We study the neutron electric dipole moment in the presence of the
CP-violating operators up to the dimension five in terms of the QCD sum rules.
It is found that the OPE calculation is robust when exploiting a particular
interpolating field for neutron, while there exist some uncertainties on the
phenomenological side. By using input parameters obtained from the lattice
calculation, we derive a conservative limit for the contributions of the CP
violating operators. We also show the detail of the derivation of the sum
rules.Comment: 33 pages, 5 figure
Quasiparticle Interference on the Surface of Topological Crystalline Insulator Pb(1-x)Sn(x)Se
Topological crystalline insulators represent a novel topological phase of
matter in which the surface states are protected by discrete point
group-symmetries of the underlying lattice. Rock-salt lead-tin-selenide alloy
is one possible realization of this phase which undergoes a topological phase
transition upon changing the lead content. We used scanning tunneling
microscopy (STM) and angle resolved photoemission spectroscopy (ARPES) to probe
the surface states on (001) PbSnSe in the topologically
non-trivial (x=0.23) and topologically trivial (x=0) phases. We observed
quasiparticle interference with STM on the surface of the topological
crystalline insulator and demonstrated that the measured interference can be
understood from ARPES studies and a simple band structure model. Furthermore,
our findings support the fact that PbSnSe and PbSe have
different topological nature.Comment: 5 pages, 4 figure
The AF structure of non commutative toroidal Z/4Z orbifolds
For any irrational theta and rational number p/q such that q|qtheta-p|<1, a
projection e of trace q|qtheta-p| is constructed in the the irrational rotation
algebra A_theta that is invariant under the Fourier transform. (The latter is
the order four automorphism U mapped to V, V mapped to U^{-1}, where U, V are
the canonical unitaries generating A_theta.) Further, the projection e is
approximately central, the cut down algebra eA_theta e contains a Fourier
invariant q x q matrix algebra whose unit is e, and the cut downs eUe, eVe are
approximately inside the matrix algebra. (In particular, there are Fourier
invariant projections of trace k|qtheta-p| for k=1,...,q.) It is also shown
that for all theta the crossed product A_theta rtimes Z_4 satisfies the
Universal Coefficient Theorem. (Z_4 := Z/4Z.) As a consequence, using the
Classification Theorem of G. Elliott and G. Gong for AH-algebras, a theorem of
M. Rieffel, and by recent results of H. Lin, we show that A_theta rtimes Z_4 is
an AF-algebra for all irrational theta in a dense G_delta.Comment: 35 page
Lattice dynamics and correlated atomic motion from the atomic pair distribution function
The mean-square relative displacements (MSRD) of atomic pair motions in
crystals are studied as a function of pair distance and temperature using the
atomic pair distribution function (PDF). The effects of the lattice vibrations
on the PDF peak widths are modelled using both a multi-parameter Born
von-Karman (BvK) force model and a single-parameter Debye model. These results
are compared to experimentally determined PDFs. We find that the near-neighbor
atomic motions are strongly correlated, and that the extent of this correlation
depends both on the interatomic interactions and crystal structure. These
results suggest that proper account of the lattice vibrational effects on the
PDF peak width is important in extracting information on static disorder in a
disordered system such as an alloy. Good agreement is obtained between the BvK
model calculations of PDF peak widths and the experimentally determined peak
widths. The Debye model successfully explains the average, though not detailed,
natures of the MSRD of atomic pair motion with just one parameter. Also the
temperature dependence of the Debye model largely agrees with the BvK model
predictions. Therefore, the Debye model provides a simple description of the
effects of lattice vibrations on the PDF peak widths.Comment: 9 pages, 11 figure
Determination of from Gross-Llewellyn Smith sum rule by accounting for infrared renormalon
We recapitulate the method which resums the truncated perturbation series of
a physical observable in a way which takes into account the structure of the
leading infrared renormalon. We apply the method to the Gross-Llewellyn Smith
(GLS) sum rule. By confronting the obtained result with the experimentally
extracted GLS value, we determine the value of the QCD coupling parameter which
turns out to agree with the present world average.Comment: invited talk by G.C. in WG3 of NuFact02, July 1-6, 2002, London; 4
pages, revte
Giant Magnetoelectric Effect in a Multiferroic Material with a High Ferroelectric Transition Temperature
We present a unique example of giant magnetoelectric effect in a conventional
multiferroic HoMnO3, where polarization is very large (~56 mC/m2) and the
ferroelectric transition temperature is higher than the magnetic ordering
temperature by an order. We attribute the uniqueness of the giant
magnetoelectric effect to the ferroelectricity induced entirely by the
off-center displacement of rare earth ions with large magnetic moments. This
finding suggests a new avenue to design multiferroics with large polarization
and higher ferroelectric transition temperature as well as large
magnetoelectric effects
Weak spin-orbit interactions induce exponentially flat mini-bands in magnetic metals without inversion symmetry
In metallic magnets like MnSi the interplay of two very weak spin-orbit
coupling effects can strongly modify the Fermi surface. In the absence of
inversion symmetry even a very small Dzyaloshinsky-Moriya interaction of
strength delta<<1 distorts a ferromagnetic state into a chiral helix with a
long pitch of order 1/delta. We show that additional small spin-orbit coupling
terms of order delta in the band structure lead to the formation of
exponentially flat minibands with a bandwidth of order exp(-1/sqrt(delta))
parallel to the direction of the helix. These flat minibands cover a rather
broad belt of width sqrt(delta) on the Fermi surface where electron motion
parallel to the helix practically stops. We argue that these peculiar
band-structure effects lead to pronounced features in the anomalous skin
effect.Comment: 7 pages, minor corrections, references adde
Evidence of metallic clustering in annealed Ga1-xMnxAs from atypical scaling behavior of the anomalous Hall coefficient
We report on the anomalous Hall coefficient and longitudinal resistivity
scaling relationships on a series of annealed Ga1-xMnxAs epilayers (x~0.055).
As-grown samples exhibit scaling parameter n of ~ 1. Near the optimal annealing
temperature, we find n ~ 2 to be consistent with recent theories on the
intrinsic origins of anomalous Hall Effect in Ga1-xMnxAs. For annealing
temperatures far above the optimum, we note n > 3, similar behavior to certain
inhomogeneous systems. This observation of atypical behavior agrees well with
characteristic features attributable to spherical resonance from metallic
inclusions from optical spectroscopy measurements.Comment: 3 pages, 3 figure
- …