242 research outputs found
Non-cyclic Geometric Phase due to Spatial Evolution in a Neutron Interferometer
We present a split-beam neutron interferometric experiment to test the
non-cyclic geometric phase tied to the spatial evolution of the system: the
subjacent two-dimensional Hilbert space is spanned by the two possible paths in
the interferometer and the evolution of the state is controlled by phase
shifters and absorbers. A related experiment was reported previously by
Hasegawa et al. [Phys. Rev. A 53, 2486 (1996)] to verify the cyclic spatial
geometric phase. The interpretation of this experiment, namely to ascribe a
geometric phase to this particular state evolution, has met severe criticism
from Wagh [Phys. Rev. A 59, 1715 (1999)]. The extension to a non-cyclic
evolution manifests the correctness of the interpretation of the previous
experiment by means of an explicit calculation of the non-cyclic geometric
phase in terms of paths on the Bloch-sphere.Comment: 4 pages, revtex
Kinematic approach to off-diagonal geometric phases of nondegenerate and degenerate mixed states
Off-diagonal geometric phases have been developed in order to provide
information of the geometry of paths that connect noninterfering quantal
states. We propose a kinematic approach to off-diagonal geometric phases for
pure and mixed states. We further extend the mixed state concept proposed in
[Phys. Rev. Lett. {\bf 90}, 050403 (2003)] to degenerate density operators. The
first and second order off-diagonal geometric phases are analyzed for unitarily
evolving pairs of pseudopure states.Comment: New section IV, new figure, journal ref adde
Experimental demonstration of the stability of Berry's phase for a spin-1/2 particle
The geometric phase has been proposed as a candidate for noise resilient
coherent manipulation of fragile quantum systems. Since it is determined only
by the path of the quantum state, the presence of noise fluctuations affects
the geometric phase in a different way than the dynamical phase. We have
experimentally tested the robustness of Berry's geometric phase for spin-1/2
particles in a cyclically varying magnetic field. Using trapped polarized
ultra-cold neutrons it is demonstrated that the geometric phase contributions
to dephasing due to adiabatic field fluctuations vanish for long evolution
times.Comment: 4 pages, 4 figure
Geometric Phase in Entangled Systems: A Single-Neutron Interferometer Experiment
The influence of the geometric phase on a Bell measurement, as proposed by
Bertlmann et al. in [Phys. Rev. A 69, 032112 (2004)], and expressed by the
Clauser-Horne-Shimony-Holt (CHSH) inequality, has been observed for a spin-path
entangled neutron state in an interferometric setup. It is experimentally
demonstrated that the effect of geometric phase can be balanced by a change in
Bell angles. The geometric phase is acquired during a time dependent
interaction with two radio-frequency (rf) fields. Two schemes, polar and
azimuthal adjustment of the Bell angles, are realized and analyzed in detail.
The former scheme, yields a sinusoidal oscillation of the correlation function
S, dependent on the geometric phase, such that it varies in the range between 2
and 2\sqrt{2} and, therefore, always exceeds the boundary value 2 between
quantum mechanic and noncontextual theories. The latter scheme results in a
constant, maximal violation of the Bell-like-CHSH inequality, where S remains
2\sqrt2 for all settings of the geometric phase.Comment: 10 pages 9 figure
Thermal Excitation of Multi-Photon Dressed States in Circuit Quantum Electrodynamics
The exceptionally strong coupling realizable between superconducting qubits
and photons stored in an on-chip microwave resonator allows for the detailed
study of matter-light interactions in the realm of circuit quantum
electrodynamics (QED). Here we investigate the resonant interaction between a
single transmon-type multilevel artificial atom and weak thermal and coherent
fields. We explore up to three photon dressed states of the coupled system in a
linear response heterodyne transmission measurement. The results are in good
quantitative agreement with a generalized Jaynes-Cummings model. Our data
indicates that the role of thermal fields in resonant cavity QED can be studied
in detail using superconducting circuits.Comment: ArXiv version of manuscript to be published in the Physica Scripta
topical issue on the Nobel Symposium 141: Qubits for Future Quantum
Computers(2009), 13 pages, 6 figures, hi-res version at
http://qudev.ethz.ch/content/science/PubsPapers.htm
New Aspects of Geometric Phases in Experiments with polarized Neutrons
Geometric phase phenomena in single neutrons have been observed in
polarimeter and interferometer experiments. Interacting with static and time
dependent magnetic fields, the state vectors acquire a geometric phase tied to
the evolution within spin subspace. In a polarimeter experiment the
non-additivity of quantum phases for mixed spin input states is observed. In a
Si perfect-crystal interferometer experiment appearance of geometric phases,
induced by interaction with an oscillating magnetic field, is verified. The
total system is characterized by an entangled state, consisting of neutron and
radiation fields, governed by a Jaynes-Cummings Hamiltonian. In addition, the
influence of the geometric phase on a Bell measurement, expressed by the
Clauser-Horne-Shimony-Holt (CHSH) inequality, is studied. It is demonstrated
that the effect of geometric phase can be balanced by an appropriate change of
Bell angles.Comment: 17 pages, 9 figure
Coherent energy manipulation in single-neutron interferometry
We have observed the stationary interference oscillations of a
triple-entangled neutron state in an interferometric experiment. Time-dependent
interaction with two radio-frequency (rf) fields enables coherent manipulation
of an energy degree of freedom in a single neutron. The system is characterized
by a multiply entangled state governed by a Jaynes-Cummings Hamiltonian. The
experimental results confirm coherence of the manipulation as well as the
validity of the description.Comment: 4 pages, 3 figure
Stabilizing entanglement autonomously between two superconducting qubits
Quantum error-correction codes would protect an arbitrary state of a
multi-qubit register against decoherence-induced errors, but their
implementation is an outstanding challenge for the development of large-scale
quantum computers. A first step is to stabilize a non-equilibrium state of a
simple quantum system such as a qubit or a cavity mode in the presence of
decoherence. Several groups have recently accomplished this goal using
measurement-based feedback schemes. A next step is to prepare and stabilize a
state of a composite system. Here we demonstrate the stabilization of an
entangled Bell state of a quantum register of two superconducting qubits for an
arbitrary time. Our result is achieved by an autonomous feedback scheme which
combines continuous drives along with a specifically engineered coupling
between the two-qubit register and a dissipative reservoir. Similar autonomous
feedback techniques have recently been used for qubit reset and the
stabilization of a single qubit state, as well as for creating and stabilizing
states of multipartite quantum systems. Unlike conventional, measurement-based
schemes, an autonomous approach counter-intuitively uses engineered dissipation
to fight decoherence, obviating the need for a complicated external feedback
loop to correct errors, simplifying implementation. Instead the feedback loop
is built into the Hamiltonian such that the steady state of the system in the
presence of drives and dissipation is a Bell state, an essential building-block
state for quantum information processing. Such autonomous schemes, broadly
applicable to a variety of physical systems as demonstrated by a concurrent
publication with trapped ion qubits, will be an essential tool for the
implementation of quantum-error correction.Comment: 39 pages, 7 figure
Observation of Resonant Photon Blockade at Microwave Frequencies using Correlation Function Measurements
Creating a train of single photons and monitoring its propagation and
interaction is challenging in most physical systems, as photons generally
interact very weakly with other systems. However, when confining microwave
frequency photons in a transmission line resonator, effective photon-photon
interactions can be mediated by qubits embedded in the resonator. Here, we
observe the phenomenon of photon blockade through second-order correlation
function measurements. The experiments clearly demonstrate antibunching in a
continuously pumped source of single microwave photons measured using microwave
beam splitters, linear amplifiers, and quadrature amplitude detectors. We also
investigate resonance fluorescence and Rayleigh scattering in
Mollow-triplet-like spectra
Preparation and Measurement of Three-Qubit Entanglement in a Superconducting Circuit
Traditionally, quantum entanglement has played a central role in foundational
discussions of quantum mechanics. The measurement of correlations between
entangled particles can exhibit results at odds with classical behavior. These
discrepancies increase exponentially with the number of entangled particles.
When entanglement is extended from just two quantum bits (qubits) to three, the
incompatibilities between classical and quantum correlation properties can
change from a violation of inequalities involving statistical averages to sign
differences in deterministic observations. With the ample confirmation of
quantum mechanical predictions by experiments, entanglement has evolved from a
philosophical conundrum to a key resource for quantum-based technologies, like
quantum cryptography and computation. In particular, maximal entanglement of
more than two qubits is crucial to the implementation of quantum error
correction protocols. While entanglement of up to 3, 5, and 8 qubits has been
demonstrated among spins, photons, and ions, respectively, entanglement in
engineered solid-state systems has been limited to two qubits. Here, we
demonstrate three-qubit entanglement in a superconducting circuit, creating
Greenberger-Horne-Zeilinger (GHZ) states with fidelity of 88%, measured with
quantum state tomography. Several entanglement witnesses show violation of
bi-separable bounds by 830\pm80%. Our entangling sequence realizes the first
step of basic quantum error correction, namely the encoding of a logical qubit
into a manifold of GHZ-like states using a repetition code. The integration of
encoding, decoding and error-correcting steps in a feedback loop will be the
next milestone for quantum computing with integrated circuits.Comment: 7 pages, 4 figures, and Supplementary Information (4 figures)
- …