242 research outputs found

    Non-cyclic Geometric Phase due to Spatial Evolution in a Neutron Interferometer

    Full text link
    We present a split-beam neutron interferometric experiment to test the non-cyclic geometric phase tied to the spatial evolution of the system: the subjacent two-dimensional Hilbert space is spanned by the two possible paths in the interferometer and the evolution of the state is controlled by phase shifters and absorbers. A related experiment was reported previously by Hasegawa et al. [Phys. Rev. A 53, 2486 (1996)] to verify the cyclic spatial geometric phase. The interpretation of this experiment, namely to ascribe a geometric phase to this particular state evolution, has met severe criticism from Wagh [Phys. Rev. A 59, 1715 (1999)]. The extension to a non-cyclic evolution manifests the correctness of the interpretation of the previous experiment by means of an explicit calculation of the non-cyclic geometric phase in terms of paths on the Bloch-sphere.Comment: 4 pages, revtex

    Kinematic approach to off-diagonal geometric phases of nondegenerate and degenerate mixed states

    Full text link
    Off-diagonal geometric phases have been developed in order to provide information of the geometry of paths that connect noninterfering quantal states. We propose a kinematic approach to off-diagonal geometric phases for pure and mixed states. We further extend the mixed state concept proposed in [Phys. Rev. Lett. {\bf 90}, 050403 (2003)] to degenerate density operators. The first and second order off-diagonal geometric phases are analyzed for unitarily evolving pairs of pseudopure states.Comment: New section IV, new figure, journal ref adde

    Experimental demonstration of the stability of Berry's phase for a spin-1/2 particle

    Full text link
    The geometric phase has been proposed as a candidate for noise resilient coherent manipulation of fragile quantum systems. Since it is determined only by the path of the quantum state, the presence of noise fluctuations affects the geometric phase in a different way than the dynamical phase. We have experimentally tested the robustness of Berry's geometric phase for spin-1/2 particles in a cyclically varying magnetic field. Using trapped polarized ultra-cold neutrons it is demonstrated that the geometric phase contributions to dephasing due to adiabatic field fluctuations vanish for long evolution times.Comment: 4 pages, 4 figure

    Geometric Phase in Entangled Systems: A Single-Neutron Interferometer Experiment

    Full text link
    The influence of the geometric phase on a Bell measurement, as proposed by Bertlmann et al. in [Phys. Rev. A 69, 032112 (2004)], and expressed by the Clauser-Horne-Shimony-Holt (CHSH) inequality, has been observed for a spin-path entangled neutron state in an interferometric setup. It is experimentally demonstrated that the effect of geometric phase can be balanced by a change in Bell angles. The geometric phase is acquired during a time dependent interaction with two radio-frequency (rf) fields. Two schemes, polar and azimuthal adjustment of the Bell angles, are realized and analyzed in detail. The former scheme, yields a sinusoidal oscillation of the correlation function S, dependent on the geometric phase, such that it varies in the range between 2 and 2\sqrt{2} and, therefore, always exceeds the boundary value 2 between quantum mechanic and noncontextual theories. The latter scheme results in a constant, maximal violation of the Bell-like-CHSH inequality, where S remains 2\sqrt2 for all settings of the geometric phase.Comment: 10 pages 9 figure

    Thermal Excitation of Multi-Photon Dressed States in Circuit Quantum Electrodynamics

    Full text link
    The exceptionally strong coupling realizable between superconducting qubits and photons stored in an on-chip microwave resonator allows for the detailed study of matter-light interactions in the realm of circuit quantum electrodynamics (QED). Here we investigate the resonant interaction between a single transmon-type multilevel artificial atom and weak thermal and coherent fields. We explore up to three photon dressed states of the coupled system in a linear response heterodyne transmission measurement. The results are in good quantitative agreement with a generalized Jaynes-Cummings model. Our data indicates that the role of thermal fields in resonant cavity QED can be studied in detail using superconducting circuits.Comment: ArXiv version of manuscript to be published in the Physica Scripta topical issue on the Nobel Symposium 141: Qubits for Future Quantum Computers(2009), 13 pages, 6 figures, hi-res version at http://qudev.ethz.ch/content/science/PubsPapers.htm

    New Aspects of Geometric Phases in Experiments with polarized Neutrons

    Full text link
    Geometric phase phenomena in single neutrons have been observed in polarimeter and interferometer experiments. Interacting with static and time dependent magnetic fields, the state vectors acquire a geometric phase tied to the evolution within spin subspace. In a polarimeter experiment the non-additivity of quantum phases for mixed spin input states is observed. In a Si perfect-crystal interferometer experiment appearance of geometric phases, induced by interaction with an oscillating magnetic field, is verified. The total system is characterized by an entangled state, consisting of neutron and radiation fields, governed by a Jaynes-Cummings Hamiltonian. In addition, the influence of the geometric phase on a Bell measurement, expressed by the Clauser-Horne-Shimony-Holt (CHSH) inequality, is studied. It is demonstrated that the effect of geometric phase can be balanced by an appropriate change of Bell angles.Comment: 17 pages, 9 figure

    Coherent energy manipulation in single-neutron interferometry

    Full text link
    We have observed the stationary interference oscillations of a triple-entangled neutron state in an interferometric experiment. Time-dependent interaction with two radio-frequency (rf) fields enables coherent manipulation of an energy degree of freedom in a single neutron. The system is characterized by a multiply entangled state governed by a Jaynes-Cummings Hamiltonian. The experimental results confirm coherence of the manipulation as well as the validity of the description.Comment: 4 pages, 3 figure

    Stabilizing entanglement autonomously between two superconducting qubits

    Full text link
    Quantum error-correction codes would protect an arbitrary state of a multi-qubit register against decoherence-induced errors, but their implementation is an outstanding challenge for the development of large-scale quantum computers. A first step is to stabilize a non-equilibrium state of a simple quantum system such as a qubit or a cavity mode in the presence of decoherence. Several groups have recently accomplished this goal using measurement-based feedback schemes. A next step is to prepare and stabilize a state of a composite system. Here we demonstrate the stabilization of an entangled Bell state of a quantum register of two superconducting qubits for an arbitrary time. Our result is achieved by an autonomous feedback scheme which combines continuous drives along with a specifically engineered coupling between the two-qubit register and a dissipative reservoir. Similar autonomous feedback techniques have recently been used for qubit reset and the stabilization of a single qubit state, as well as for creating and stabilizing states of multipartite quantum systems. Unlike conventional, measurement-based schemes, an autonomous approach counter-intuitively uses engineered dissipation to fight decoherence, obviating the need for a complicated external feedback loop to correct errors, simplifying implementation. Instead the feedback loop is built into the Hamiltonian such that the steady state of the system in the presence of drives and dissipation is a Bell state, an essential building-block state for quantum information processing. Such autonomous schemes, broadly applicable to a variety of physical systems as demonstrated by a concurrent publication with trapped ion qubits, will be an essential tool for the implementation of quantum-error correction.Comment: 39 pages, 7 figure

    Observation of Resonant Photon Blockade at Microwave Frequencies using Correlation Function Measurements

    Full text link
    Creating a train of single photons and monitoring its propagation and interaction is challenging in most physical systems, as photons generally interact very weakly with other systems. However, when confining microwave frequency photons in a transmission line resonator, effective photon-photon interactions can be mediated by qubits embedded in the resonator. Here, we observe the phenomenon of photon blockade through second-order correlation function measurements. The experiments clearly demonstrate antibunching in a continuously pumped source of single microwave photons measured using microwave beam splitters, linear amplifiers, and quadrature amplitude detectors. We also investigate resonance fluorescence and Rayleigh scattering in Mollow-triplet-like spectra

    Preparation and Measurement of Three-Qubit Entanglement in a Superconducting Circuit

    Full text link
    Traditionally, quantum entanglement has played a central role in foundational discussions of quantum mechanics. The measurement of correlations between entangled particles can exhibit results at odds with classical behavior. These discrepancies increase exponentially with the number of entangled particles. When entanglement is extended from just two quantum bits (qubits) to three, the incompatibilities between classical and quantum correlation properties can change from a violation of inequalities involving statistical averages to sign differences in deterministic observations. With the ample confirmation of quantum mechanical predictions by experiments, entanglement has evolved from a philosophical conundrum to a key resource for quantum-based technologies, like quantum cryptography and computation. In particular, maximal entanglement of more than two qubits is crucial to the implementation of quantum error correction protocols. While entanglement of up to 3, 5, and 8 qubits has been demonstrated among spins, photons, and ions, respectively, entanglement in engineered solid-state systems has been limited to two qubits. Here, we demonstrate three-qubit entanglement in a superconducting circuit, creating Greenberger-Horne-Zeilinger (GHZ) states with fidelity of 88%, measured with quantum state tomography. Several entanglement witnesses show violation of bi-separable bounds by 830\pm80%. Our entangling sequence realizes the first step of basic quantum error correction, namely the encoding of a logical qubit into a manifold of GHZ-like states using a repetition code. The integration of encoding, decoding and error-correcting steps in a feedback loop will be the next milestone for quantum computing with integrated circuits.Comment: 7 pages, 4 figures, and Supplementary Information (4 figures)
    corecore