38,551 research outputs found
Response to "The invalidity of a Mach probe model" [Phys. Plasmas 9, 1832 (2002)]
Hutchinson gives a nice analysis of the (in)validity of Hudis and Lidsky’s unmagnetized Mach probe theory.(1) We agree with his main assertions, which are that (1) a one-dimensional model is incapable of properly describing unmagnetized ion collection by a Mach probe and (2) any experimental agreement with theories based on Hudis and Lidsky should not be interpreted as physical validation of their model
A Laboratory Plasma Experiment for Studying Magnetic Dynamics of Accretion Discs and Jets
This work describes a laboratory plasma experiment and initial results which
should give insight into the magnetic dynamics of accretion discs and jets. A
high-speed multiple-frame CCD camera reveals images of the formation and
helical instability of a collimated plasma, similar to MHD models of disc jets,
and also plasma detachment associated with spheromak formation, which may have
relevance to disc winds and flares. The plasmas are produced by a planar
magnetized coaxial gun. The resulting magnetic topology is dependent on the
details of magnetic helicity injection, namely the force-free state eigenvalue
alpha_gun imposed by the coaxial gun.Comment: accepted for publication in MNRA
Study of magnetic helicity injection via plasma imaging using a high-speed digital camera
The evolution of a plasma generated by a novel planar coaxial gun is photographed using a state-of-the-art digital camera, which captures eight time-resolved images per discharge. This experiment is designed to study the fundamental physics of magnetic helicity injection, which is an important issue in fusion plasma confinement, as well as solar and astrophysical phenomena such as coronal mass ejections and accretion disk dynamics. The images presented in this paper are not only beautiful but provide a powerful way to understand the global dynamics of the plasma
Multi-chord fiber-coupled interferometer with a long coherence length laser
This paper describes a 561 nm laser heterodyne interferometer that provides
time-resolved measurements of line-integrated plasma electron density within
the range of 10^15-10^18 cm^(-2). Such plasmas are produced by railguns on the
Plasma Liner Experiment (PLX), which aims to produce \mu s-, cm-, and
Mbar-scale plasmas through the merging of thirty plasma jets in a spherically
convergent geometry. A long coherence length, 320 mW laser allows for a strong,
sub-fringe phase-shift signal without the need for closely-matched probe and
reference path lengths. Thus only one reference path is required for all eight
probe paths, and an individual probe chord can be altered without altering the
reference or other probe path lengths. Fiber-optic decoupling of the probe
chord optics on the vacuum chamber from the rest of the system allows the probe
paths to be easily altered to focus on different spatial regions of the plasma.
We demonstrate that sub-fringe resolution capability allows the interferometer
to operate down to line-integrated densities of order 10^15 cm^(-2).Comment: submitted to Rev. Sci. Instrum. (2011
A Model of R&D Valuation and the Design of Research Incentives
We develop a real options model of R&D valuation, which takes into account the uncertainty in the quality of the research output, the time and cost to completion, and the market demand for the R&D output. The model is then applied to study the problem of pharmaceutical under-investment in R&D for vaccines to treat diseases affecting the developing regions of the world. To address this issue, world organizations and private foundations are willing to sponsor vaccine R&D, but there is no consensus on how to administer the sponsorship effectively. Different research incentive contracts are examined using our valuation model. Their effectiveness is measured in the following four dimensions: cost to the sponsor, the probability of development success, the consumer surplus generated and the expected cost per person successfully vaccinated. We find that, in general, purchase commitment plans (pull subsidies) are more effective than cost subsidy plans (push subsidies), while extending patent protection is completely ineffective. Specifically, we find that a hybrid subsidy constructed from a purchase commitment combined with a sponsor co-payment feature produces the best results in all four dimensions of the effectiveness measure.
- …