13,126 research outputs found
Cauchy problem for the Boltzmann-BGK model near a global Maxwellian
In this paper, we are interested in the Cauchy problem for the Boltzmann-BGK
model for a general class of collision frequencies. We prove that the
Boltzmann-BGK model linearized around a global Maxwellian admits a unique
global smooth solution if the initial perturbation is sufficiently small in a
high order energy norm. We also establish an asymptotic decay estimate and
uniform -stability for nonlinear perturbations.Comment: 26 page
A V-Diagram for the Design of Integrated Health Management for Unmanned Aerial Systems
Designing Integrated Vehicle Health Management (IVHM) for Unmanned Aerial Systems (UAS) is inherently complex. UAS are a system of systems (SoS) and IVHM is a product-service, thus the designer has to take into account many factors, such as: the design of the other systems of the UAS (e.g. engines, structure, communications), the split of functions between elements of the UAS, the intended operation/mission of the UAS, the cost verses benefit of monitoring a system/component/part, different techniques for monitoring the health of the UAS, optimizing the health of the fleet and not just the individual UAS, amongst others. The design of IVHM cannot sit alongside, or after, the design of UAS, but itself be integrated into the overall design to maximize IVHM’s potential.
Many different methods exist to help design complex products and manage the process. One method used is the V-diagram which is based on three concepts: decomposition & definition; integration & testing; and verification & validation. This paper adapts the V-diagram so that it can be used for designing IVHM for UAS. The adapted v-diagram splits into different tracks for the different system elements of the UAS and responses to health states (decomposition and definition). These tracks are then combined into an overall IVHM provision for the UAS (integration and testing), which can be verified and validated. The stages of the adapted V-diagram can easily be aligned with the stages of the V-diagram being used to design the UAS bringing the design of the IVHM in step with the overall design process. The adapted V-diagram also allows the design IVHM for a UAS to be broken down in to smaller tasks which can be assigned to people/teams with the relevant competencies. The adapted V-diagram could also be used to design IVHM for other SoS and other vehicles or products
Inferring meta-covariates in classification
This paper develops an alternative method for gene selection that combines model based clustering and binary classification. By averaging the covariates within the clusters obtained from model based clustering, we define “meta-covariates” and use them to build a probit regression model, thereby selecting clusters of similarly behaving genes, aiding interpretation. This simultaneous learning task is accomplished by an EM algorithm that optimises a single likelihood function which rewards good performance at both classification and clustering. We explore the performance of our methodology on a well known leukaemia dataset and use the Gene Ontology to interpret our results
Subthreshold characteristics of pentacene field-effect transistors influenced by grain boundaries.
Grain boundaries in polycrystalline pentacene films significantly affect the electrical characteristics of pentacene field-effect transistors (FETs). Upon reversal of the gate voltage sweep direction, pentacene FETs exhibited hysteretic behaviours in the subthreshold region, which was more pronounced for the FET having smaller pentacene grains. No shift in the flat-band voltage of the metal-insulator-semiconductor capacitor elucidates that the observed hysteresis was mainly caused by the influence of localized trap states existing at pentacene grain boundaries. From the results of continuous on/off switching operation of the pentacene FETs, hole depletion during the off period is found to be limited by pentacene grain boundaries. It is suggested that the polycrystalline nature of a pentacene film plays an important role on the dynamic characteristics of pentacene FETs
Adhesion Induced DNA Naturation
DNA adsorption and naturation is modeled via two interacting flexible
homopolymers coupled to a solid surface. DNA denatures if the entropy gain for
unbinding the two strands overcomes the loss of binding energy. When adsorbed
to a surface, the entropy gain is smaller than in the bulk, leading to a
stronger binding and, upon neglecting self-avoidance, absence of a denatured
phase. Now consider conditions where the binding potentials are too weak for
naturation, and the surface potential too weak to adsorb single strands. In a
variational approach it is shown that their combined action may lead to a
naturated adsorbed phase. Conditions for the absence of naturation and
adsorption are derived too. The phase diagram is constructed qualitatively.Comment: 4 pages, 1 figur
Extending the Real-Time Maude Semantics of Ptolemy to Hierarchical DE Models
This paper extends our Real-Time Maude formalization of the semantics of flat
Ptolemy II discrete-event (DE) models to hierarchical models, including modal
models. This is a challenging task that requires combining synchronous
fixed-point computations with hierarchical structure. The synthesis of a
Real-Time Maude verification model from a Ptolemy II DE model, and the formal
verification of the synthesized model in Real-Time Maude, have been integrated
into Ptolemy II, enabling a model-engineering process that combines the
convenience of Ptolemy II DE modeling and simulation with formal verification
in Real-Time Maude.Comment: In Proceedings RTRTS 2010, arXiv:1009.398
High Energy Physics from High Performance Computing
We discuss Quantum Chromodynamics calculations using the lattice regulator.
The theory of the strong force is a cornerstone of the Standard Model of
particle physics. We present USQCD collaboration results obtained on Argonne
National Lab's Intrepid supercomputer that deepen our understanding of these
fundamental theories of Nature and provide critical support to frontier
particle physics experiments and phenomenology.Comment: Proceedings of invited plenary talk given at SciDAC 2009, San Diego,
June 14-18, 2009, on behalf of the USQCD collaboratio
Distributed Graph Clustering using Modularity and Map Equation
We study large-scale, distributed graph clustering. Given an undirected
graph, our objective is to partition the nodes into disjoint sets called
clusters. A cluster should contain many internal edges while being sparsely
connected to other clusters. In the context of a social network, a cluster
could be a group of friends. Modularity and map equation are established
formalizations of this internally-dense-externally-sparse principle. We present
two versions of a simple distributed algorithm to optimize both measures. They
are based on Thrill, a distributed big data processing framework that
implements an extended MapReduce model. The algorithms for the two measures,
DSLM-Mod and DSLM-Map, differ only slightly. Adapting them for similar quality
measures is straight-forward. We conduct an extensive experimental study on
real-world graphs and on synthetic benchmark graphs with up to 68 billion
edges. Our algorithms are fast while detecting clusterings similar to those
detected by other sequential, parallel and distributed clustering algorithms.
Compared to the distributed GossipMap algorithm, DSLM-Map needs less memory, is
up to an order of magnitude faster and achieves better quality.Comment: 14 pages, 3 figures; v3: Camera ready for Euro-Par 2018, more
details, more results; v2: extended experiments to include comparison with
competing algorithms, shortened for submission to Euro-Par 201
Unusual Higgs or Supersymmetry from Natural Electroweak Symmetry Breaking
This review provides an elementary discussion of electroweak symmetry
breaking in the minimal and the next-to-minimal supersymmetric models with the
focus on the fine-tuning problem -- the tension between natural electroweak
symmetry breaking and the direct search limit on the Higgs boson mass. Two
generic solutions of the fine-tuning problem are discussed in detail: models
with unusual Higgs decays; and models with unusual pattern of soft
supersymmetry breaking parameters.Comment: 23 pages, 6 figures; invited review by MPL
On structural physical approximations and entanglement breaking maps
Very recently a conjecture saying that the so-called structural physical
approximations (SPAa) to optimal positive maps (optimal entanglement witnesses)
give entanglement breaking (EB) maps (separable states) has been posed [J. K.
Korbicz {\it et al.}, Phys. Rev. A {\bf 78}, 062105 (2008)]. The main purpose
of this contribution is to explore this subject. First, we extend the set of
entanglement witnesses (EWs) supporting the conjecture. Then, we ask if SPAs
constructed from other than the depolarizing channel maps also lead to EB maps
and show that in general this is not the case. On the other hand, we prove an
interesting fact that for any positive map there exists an EB channel
such that the SPA of constructed with the aid of is
again an EB channel. Finally, we ask similar questions in the case of
continuous variable systems. We provide a simple way of construction of SPA and
prove that in the case of the transposition map it gives EB channel.Comment: 22 pages, improved version, accepted by Journal of Physics
- …