5,981 research outputs found

    High-Performance Bioinstrumentation for Real-Time Neuroelectrochemical Traumatic Brain Injury Monitoring

    Get PDF
    Traumatic brain injury (TBI) has been identified as an important cause of death and severe disability in all age groups and particularly in children and young adults. Central to TBIs devastation is a delayed secondary injury that occurs in 30–40% of TBI patients each year, while they are in the hospital Intensive Care Unit (ICU). Secondary injuries reduce survival rate after TBI and usually occur within 7 days post-injury. State-of-art monitoring of secondary brain injuries benefits from the acquisition of high-quality and time-aligned electrical data i.e., ElectroCorticoGraphy (ECoG) recorded by means of strip electrodes placed on the brains surface, and neurochemical data obtained via rapid sampling microdialysis and microfluidics-based biosensors measuring brain tissue levels of glucose, lactate and potassium. This article progresses the field of multi-modal monitoring of the injured human brain by presenting the design and realization of a new, compact, medical-grade amperometry, potentiometry and ECoG recording bioinstrumentation. Our combined TBI instrument enables the high-precision, real-time neuroelectrochemical monitoring of TBI patients, who have undergone craniotomy neurosurgery and are treated sedated in the ICU. Electrical and neurochemical test measurements are presented, confirming the high-performance of the reported TBI bioinstrumentation

    Full W-band MMIC medium power amplifier

    Get PDF
    A full W-band, MMIC amplifier has been tested on-wafer. The chip delivers 25-43 mW with 6.2±1.2 dB associated large-signal gain across 75-110 GHz when input power is held constant at 8 mW. This is the widest bandwidth MMIC amplifier ever published that delivers at least 25 mW over the entire W-band

    Empirical load-line capacitance models for HEMT

    Get PDF
    Models for describing the gate-source and gate-drain capacitances' variation along a resistive load line have been proposed. They are charge conservative and consistent with the small-signal model at bias points along the load line. The extraction procedure for the models' parameters is fast and intuitive. The models can be implemented easily in most circuit simulator programs

    Novel technique of phase velocity equalization for microstrip coupled-line phase shifters

    Get PDF
    By properly selecting the characteristic impedance and electrical length of the linking line between the coupled lines, phase velocity compensation for microstrip coupled-line phase shifters can be achieved. This technique does not introduce extra element or modification to the coupling in the main coupled lines. It is simple to implement and it has the potential to be used at mm-wave frequencies

    Towards Better Tools to Support Mixed Methods in Game User Research

    Full text link

    Measurement of Shear Modulus Profile Using a Continuous Surface Wave Measurement System

    Get PDF
    For most ground response analyses, the shear modulus is an important parameter to be determined and it has to be measured over a large strain range, so as to characterise the soil behavior under various loading conditions. Laboratory measurement of shear modulus covers a limited strain range depending on the test method. The main difficulty lies in the determination of the shear modulus at very small strains. In this respect, geophysical methods are more attractive. One of these test methods, which uses a continuous surface wave, is used to obtain the shear modulus profile at two sites in Singapore. The Continuous Surface Wave System (CSWS) is a nonintrusive field geophysical test consisting of a vibrator source and several receiver geophones connected to a computer system. The computer collects and analyses the field data, and provides a shear modulus profile at the test site. Conclusions from the field tests support published literature that such field seismic tests are capable of measuring the low-strain shear modulus well. The interpretation of field test data in the absence of specific stratigraphic information can pose some difficulties. An important part in interpreting continuous surface wave measurement data is in the selection of a suitable inversion tool so as to derive the correct shear modulus profile for the site under consideration. A finite element approach (using LS DYNA) is investigated for inversion of field test data. Data obtained from S-wave cross-hole survey are also compared with field tests data obtained using CSWS

    Modulation of Natural Killer Cell Cytotoxicity in Human Cytomegalovirus Infection: The Role of Endogenous Class I Major Histocompatibility Complex and a Viral Class I Homolog

    Get PDF
    Natural killer (NK) cells have been implicated in early immune responses against certain viruses, including cytomegalovirus (CMV). CMV causes downregulation of class I major histocompatibility complex (MHC) expression in infected cells; however, it has been proposed that a class I MHC homolog encoded by CMV, UL18, may act as a surrogate ligand to prevent NK cell lysis of CMV-infected cells. In this study, we examined the role of UL18 in NK cell recognition and lysis using fibroblasts infected with either wild-type or UL18 knockout CMV virus, and by using cell lines transfected with the UL18 gene. In both systems, the expression of UL18 resulted in the enhanced killing of target cells. We also show that the enhanced killing is due to both UL18-dependent and -independent mechanisms, and that the killer cell inhibitory receptors (KIRs) and CD94/NKG2A inhibitory receptors for MHC class I do not play a role in affecting susceptibility of CMV-infected fibroblasts to NK cell–mediated cytotoxicity

    Necrotising colitis related to clozapine? A rare but life threatening side effect

    Get PDF
    We report here a case of a 34-year-old gentleman who developed right-sided necrotising colitis after clozapine usage. Anticholinergic activity is believed to the cause. We believe that in patients who have been consuming medications known to have an association with necrotising colitis, constipation with concomitant increasing abdominal pain, distension and fever should be treated with a strong index of suspicion. Consideration of necrotising colitis should prompt expeditious resection of the affected colonic segment

    Multimodal hyperscanning reveals that synchrony of body and mind are distinct in mother-child dyads

    Get PDF
    Hyperscanning studies have begun to unravel the brain mechanisms underlying social interaction, indicating a functional role for interpersonal neural synchronization (INS), yet the mechanisms that drive INS are poorly understood. The current study, thus, addresses whether INS is functionally-distinct from synchrony in other systems – specifically the autonomic nervous system and motor behavior. To test this, we used concurrent functional near-infrared spectroscopy - electrocardiography recordings, while N = 34 mother-child and stranger-child dyads engaged in cooperative and competitive tasks. Only in the neural domain was a higher synchrony for mother-child compared to stranger-child dyads observed. Further, autonomic nervous system and neural synchrony were positively related during competition but not during cooperation. These results suggest that synchrony in different behavioral and biological systems may reflect distinct processes. Furthermore, they show that increased mother-child INS is unlikely to be explained solely by shared arousal and behavioral similarities, supporting recent theories that postulate that INS is higher in close relationships
    corecore