107 research outputs found

    Counting generalized Jenkins-Strebel differentials

    Full text link
    We study the combinatorial geometry of "lattice" Jenkins--Strebel differentials with simple zeroes and simple poles on CP1\mathbb{C}P^1 and of the corresponding counting functions. Developing the results of M. Kontsevich we evaluate the leading term of the symmetric polynomial counting the number of such "lattice" Jenkins-Strebel differentials having all zeroes on a single singular layer. This allows us to express the number of general "lattice" Jenkins-Strebel differentials as an appropriate weighted sum over decorated trees. The problem of counting Jenkins-Strebel differentials is equivalent to the problem of counting pillowcase covers, which serve as integer points in appropriate local coordinates on strata of moduli spaces of meromorphic quadratic differentials. This allows us to relate our counting problem to calculations of volumes of these strata . A very explicit expression for the volume of any stratum of meromorphic quadratic differentials recently obtained by the authors leads to an interesting combinatorial identity for our sums over trees.Comment: to appear in Geometriae Dedicata. arXiv admin note: text overlap with arXiv:1212.166

    Normal origamis of Mumford curves

    Full text link
    An origami (also known as square-tiled surface) is a Riemann surface covering a torus with at most one branch point. Lifting two generators of the fundamental group of the punctured torus decomposes the surface into finitely many unit squares. By varying the complex structure of the torus one obtains easily accessible examples of Teichm\"uller curves in the moduli space of Riemann surfaces. The p-adic analogues of Riemann surfaces are Mumford curves. A p-adic origami is defined as a covering of Mumford curves with at most one branch point, where the bottom curve has genus one. A classification of all normal non-trivial p-adic origamis is presented and used to calculate some invariants. These can be used to describe p-adic origamis in terms of glueing squares.Comment: 21 pages, to appear in manuscripta mathematica (Springer

    Functions of several Cayley-Dickson variables and manifolds over them

    Full text link
    Functions of several octonion variables are investigated and integral representation theorems for them are proved. With the help of them solutions of the ~{\tilde {\partial}}-equations are studied. More generally functions of several Cayley-Dickson variables are considered. Integral formulas of the Martinelli-Bochner, Leray, Koppelman type used in complex analysis here are proved in the new generalized form for functions of Cayley-Dickson variables instead of complex. Moreover, analogs of Stein manifolds over Cayley-Dickson graded algebras are defined and investigated

    Normal families of functions and groups of pseudoconformal diffeomorphisms of quaternion and octonion variables

    Full text link
    This paper is devoted to the specific class of pseudoconformal mappings of quaternion and octonion variables. Normal families of functions are defined and investigated. Four criteria of a family being normal are proven. Then groups of pseudoconformal diffeomorphisms of quaternion and octonion manifolds are investigated. It is proven, that they are finite dimensional Lie groups for compact manifolds. Their examples are given. Many charactersitic features are found in comparison with commutative geometry over R\bf R or C\bf C.Comment: 55 pages, 53 reference

    Quasiperiodic functions theory and the superlattice potentials for a two-dimensional electron gas

    Full text link
    We consider Novikov problem of the classification of level curves of quasiperiodic functions on the plane and its connection with the conductivity of two-dimensional electron gas in the presence of both orthogonal magnetic field and the superlattice potentials of special type. We show that the modulation techniques used in the recent papers on the 2D heterostructures permit to obtain the general quasiperiodic potentials for 2D electron gas and consider the asymptotic limit of conductivity when τ\tau \to \infty. Using the theory of quasiperiodic functions we introduce here the topological characteristics of such potentials observable in the conductivity. The corresponding characteristics are the direct analog of the "topological numbers" introduced previously in the conductivity of normal metals.Comment: Revtex, 16 pages, 12 figure

    The Right Place at the Right Time: Creative Spaces in Libraries

    Get PDF
    Purpose This essay explores the recent trend in libraries: that of the establishment of spaces specifically set aside for creative work. The rise of these dedicated creative spaces is owed to a confluence of factors that happen to be finding their expression together in recent years. This essay examines the history of these spaces and explores the factors that gave rise to them and will fuel them moving forward. Design/Methodology/Approach A viewpoint piece, this essay combines historical research and historical/comparative analyses to examine the ways by which libraries have supported creative work in the past and how they may continue to do so into the 21st century. Findings The key threads brought together include a societal recognition of the value of creativity and related skills and attributes; the philosophies, values, and missions of libraries in both their longstanding forms and in recent evolutions; the rise of participatory culture as a result of inexpensive technologies; improved means to build community and share results of efforts; and library experience and historical practice in matters related to creativity. The chapter concludes with advice for those interested in the establishment of such spaces, grounding those reflections in the author’s experiences in developing a new creative space at Virginia Commonwealth University. Originality/value While a number of pieces have been written that discuss the practicalities of developing certain kinds of creative spaces, very little has been written that situates these spaces in larger social and library professional contexts; this essay begins to fill that gap

    On partial derivatives of multivariate Bernstein polynomials

    Get PDF
    It is shown that Bernstein polynomials for a multivariate function converge to this function along with partial derivatives provided that the latter derivatives exist and are continuous. This result may be useful in some issues of stochastic calculus

    Ergodic infinite group extensions of geodesic flows on translation surfaces

    Full text link
    We show that generic infinite group extensions of geodesic flows on square tiled translation surfaces are ergodic in almost every direction, subject to certain natural constraints. Recently K. Fr\c{a}czek and C. Ulcigrai have shown that certain concrete staircases, covers of square-tiled surfaces, are not ergodic in almost every direction. In contrast we show the almost sure ergodicity of other concrete staircases. An appendix provides a combinatorial approach for the study of square-tiled surfaces
    corecore