84 research outputs found

    Influence of Grain Size on Phase Transitions in Halide Perovskite Films

    Get PDF
    Grain size in polycrystalline halide perovskite films is known to have an impact on the optoelectronic properties of the films, but its influence on their soft structural properties and phase transitions is unclear. Here, we use temperature-dependent X-ray diffraction, absorption, and macro- and micro-photoluminescence measurements to investigate the tetragonal to orthorhombic phase transition in thin methylammonium lead iodide films with grain sizes ranging from the micron scale down to the tens of nanometre scale. We show that the phase transition nominally at ~150 K is increasingly suppressed with decreasing grain size and, in the smallest grains, we only see the first evidence of a phase transition at temperatures as low as ~80 K. With decreasing grain size, we also see an increasing magnitude of the hysteresis in the structural and optoelectronic properties when cooling to, and then upon heating from, 100K. Our work reveals the remarkable sensitivity of the optoelectronic, physical and phase properties to the local environment of the perovskite structure, which will have large ramifications for phase and defect engineering in operating devices.EPSRC NanoDTC Royal Society ERC Starting Gran

    Human amniotic fluid glycoproteins expressing sialyl Lewis carbohydrate antigens stimulate progesterone production in human trophoblasts in vitro

    Get PDF
    Background: Progesterone is thought to mediate immune modulator effects by regulating uterine responsiveness. The aim of the study was to clarify the effect of transferrin and glycodelin A (former name PP14) as sialyl Lewis X-expressing glycoproteins on the release of progesterone by trophoblast cells in vitro. Methods: Cytotrophoblast cells were prepared from human term placentas by standard dispersion of villous tissue followed by a Percoll gradient centrifugation step. Trophoblasts were incubated with varying concentrations (50-300 mug/ml) of human amniotic fluid- and serum-transferrin as well as with glycodelin A. Culture supernatants were assayed for progesterone, human chorionic gonadotropin (hCG) and cortisol by enzyme immunometric methods. Results: The release of progesterone is increased in amniotic fluid transferrin- and glycodelin A-treated trophoblast cell cultures compared to untreated trophoblast cells. There is no relation between transferrin and the hCG or cortisol production of trophoblast cells. Conclusion: The results suggest that sialyl Lewis carbohydrate antigen-expressing amniotic fluid glycoproteins modulate the endocrine function of trophoblasts in culture by upregulating progesterone production. Copyright (C) 2004 S. Karger AG, Basel

    Imaging Light-Induced Migration of Dislocations in Halide Perovskites with 3d Nanoscale Strain Mapping

    Get PDF
    In recent years, halide perovskite materials have been used to make high-performance solar cells and light-emitting devices. However, material defects still limit device performance and stability. Here, synchrotron-based Bragg coherent diffraction imaging is used to visualize nanoscale strain fields, such as those local to defects, in halide perovskite microcrystals. Significant strain heterogeneity within MAPbBr3 (MA = CH3NH3+) crystals is found in spite of their high optoelectronic quality, and both 〈100〉 and 〈110〉 edge dislocations are identified through analysis of their local strain fields. By imaging these defects and strain fields in situ under continuous illumination, dramatic light-induced dislocation migration across hundreds of nanometers is uncovered. Further, by selectively studying crystals that are damaged by the X-ray beam, large dislocation densities and increased nanoscale strains are correlated with material degradation and substantially altered optoelectronic properties assessed using photoluminescence microscopy measurements. These results demonstrate the dynamic nature of extended defects and strain in halide perovskites, which will have important consequences for device performance and operational stability

    Imaging Light-Induced Migration of Dislocations in Halide Perovskites with 3D Nanoscale Strain Mapping

    Full text link
    In recent years, halide perovskite materials have been used to make high performance solar cell and light-emitting devices. However, material defects still limit device performance and stability. Here, we use synchrotron-based Bragg Coherent Diffraction Imaging to visualise nanoscale strain fields, such as those local to defects, in halide perovskite microcrystals. We find significant strain heterogeneity within MAPbBr3_{3} (MA = CH3_{3}NH3+_{3}^{+}) crystals in spite of their high optoelectronic quality, and identify both ⟨\langle100⟩\rangle and ⟨\langle110⟩\rangle edge dislocations through analysis of their local strain fields. By imaging these defects and strain fields in situ under continuous illumination, we uncover dramatic light-induced dislocation migration across hundreds of nanometres. Further, by selectively studying crystals that are damaged by the X-ray beam, we correlate large dislocation densities and increased nanoscale strains with material degradation and substantially altered optoelectronic properties assessed using photoluminescence microscopy measurements. Our results demonstrate the dynamic nature of extended defects and strain in halide perovskites and their direct impact on device performance and operational stability.Comment: Main text and Supplementary Information. Main text: 15 pages, 4 figures. Supplementary Information: 16 pages, 27 figures, 1 tabl

    Competitive bidding aus der Sicht des Ausschreibers Ein spieltheoretischer Ansatz

    No full text
    Bibliothek Weltwirtschaft Kiel C 148330 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLE2. ed.DEGerman
    • …
    corecore