4,482 research outputs found

    Stability of AdSp×Mq compactifications without supersymmetry

    Get PDF
    We study the stability of Freund-Rubin compactifications, AdSp×Mq, of (p+q)-dimensional gravity theories with a q-form field strength and no cosmological term. We show that the general AdSp×S^q vacuum is classically stable against small fluctuations, in the sense that all modes satisfy the Breitenlohner-Freedman bound. In particular, the compactifications used in the recent discussion of the proposed bosonic M theory are perturbatively stable. Our analysis treats all modes arising from the graviton and the q form, and is completely independent of supersymmetry. From the masses of the linearized perturbations, we obtain the dimensions of some operators in possible holographic dual CFT’s. Solutions with more general compact Einstein spaces need not be stable, and in particular AdSp×S^n×S^(q-n) is unstable for q~9. We also study the AdS4×S^6 compactification of massive type IIA supergravity, which differs from the usual Freund-Rubin compactification in that there is a cosmological term already in ten dimensions. This nonsupersymmetric vacuum is unstable

    Self-dual Embeddings of K_{4m,4n} in Different Orientable and Nonorientable Pseudosurfaces with the Same Euler Characteristic

    Full text link
    A proper embedding of a graph G in a pseudosurface P is an embedding in which the regions of the complement of G in P are homeomorphic to discs and a vertex of G appears at each pinchpoint in P; we say that a proper embedding of G in P is self dual if there exists an isomorphism from G to its dual graph. We give an explicit construction of a self-dual embedding of the complete bipartite graph K_{4m,4n} in an orientable pseudosurface for all m,n≄1m, n\ge 1; we show that this embedding maximizes the number of umbrellas of each vertex and has the property that for any vertex v of K_{4m,4n}, there are two faces of the constructed embedding that intersect all umbrellas of v. Leveraging these properties and applying a lemma of Bruhn and Diestel, we apply a surgery introduced here or a different known surgery of Edmonds to each of our constructed embeddings for which at least one of m or n is at least 2. The result of these surgeries is that there exist distinct orientable and nonorientable pseudosurfaces with the same Euler characteristic that feature a self-dual embedding of K_{4m,4n}

    Dynamical Correlation Functions using the Density Matrix Renormalization Group

    Full text link
    The density matrix renormalization group (DMRG) method allows for very precise calculations of ground state properties in low-dimensional strongly correlated systems. We investigate two methods to expand the DMRG to calculations of dynamical properties. In the Lanczos vector method the DMRG basis is optimized to represent Lanczos vectors, which are then used to calculate the spectra. This method is fast and relatively easy to implement, but the accuracy at higher frequencies is limited. Alternatively, one can optimize the basis to represent a correction vector for a particular frequency. The correction vectors can be used to calculate the dynamical correlation functions at these frequencies with high accuracy. By separately calculating correction vectors at different frequencies, the dynamical correlation functions can be interpolated and pieced together from these results. For systems with open boundaries we discuss how to construct operators for specific wavevectors using filter functions.Comment: minor revision, 10 pages, 15 figure

    CMB Signals of Neutrino Mass Generation

    Full text link
    We propose signals in the cosmic microwave background to probe the type and spectrum of neutrino masses. In theories that have spontaneous breaking of approximate lepton flavor symmetries at or below the weak scale, light pseudo-Goldstone bosons recouple to the cosmic neutrinos after nucleosynthesis and affect the acoustic oscillations of the electron-photon fluid during the eV era. Deviations from the Standard Model are predicted for both the total energy density in radiation during this epoch, \Delta N_nu, and for the multipole of the n'th CMB peak at large n, \Delta l_n. The latter signal is difficult to reproduce other than by scattering of the known neutrinos, and is therefore an ideal test of our class of theories. In many models, the large shift, \Delta l_n \approx 8 n_S, depends on the number of neutrino species that scatter via the pseudo-Goldstone boson interaction. This interaction is proportional to the neutrino masses, so that the signal reflects the neutrino spectrum. The prediction for \Delta N_nu is highly model dependent, but can be accurately computed within any given model. It is very sensitive to the number of pseudo-Goldstone bosons, and therefore to the underlying symmetries of the leptons, and is typically in the region of 0.03 < \Delta N_nu < 1. This signal is significantly larger for Majorana neutrinos than for Dirac neutrinos, and, like the scattering signal, varies as the spectrum of neutrinos is changed from hierarchical to inverse hierarchical to degenerate.Comment: 40 pages, 4 figure

    Fluctuating surface-current formulation of radiative heat transfer for arbitrary geometries

    Full text link
    We describe a fluctuating surface-current formulation of radiative heat transfer, applicable to arbitrary geometries, that directly exploits standard, efficient, and sophisticated techniques from the boundary-element method. We validate as well as extend previous results for spheres and cylinders, and also compute the heat transfer in a more complicated geometry consisting of two interlocked rings. Finally, we demonstrate that the method can be readily adapted to compute the spatial distribution of heat flux on the surface of the interacting bodies

    Implementing Activity Structures Process Modeling On Top Of The MARVEL Environment Kernel

    Get PDF
    Our goal was to implement the activity structures model defined by Software Design & Analysis on top of the MARVEL environment kernel. This involved further design of the activity structures process definition language and enaction model as well as translation and run-time support in terms of facilities provided by MARVEL. The result is an elegant declarative control language for multi-user software processes, with data and activities defined as classes and rules in the previously existing MARVEL Strategy Language. Semantics-based concurrency control is provided by a combination of the MARVEL kernel‘s lock and transaction managers and the send/receive synchronization primitives of the activity structures model

    Modeling near-field radiative heat transfer from sharp objects using a general 3d numerical scattering technique

    Full text link
    We examine the non-equilibrium radiative heat transfer between a plate and finite cylinders and cones, making the first accurate theoretical predictions for the total heat transfer and the spatial heat flux profile for three-dimensional compact objects including corners or tips. We find qualitatively different scaling laws for conical shapes at small separations, and in contrast to a flat/slightly-curved object, a sharp cone exhibits a local \emph{minimum} in the spatially resolved heat flux directly below the tip. The method we develop, in which a scattering-theory formulation of thermal transfer is combined with a boundary-element method for computing scattering matrices, can be applied to three-dimensional objects of arbitrary shape.Comment: 5 pages, 4 figures. Corrected background information in the introduction, results and discussion unchange

    Calibrated Surfaces and Supersymmetric Wilson Loops

    Full text link
    We study the dual gravity description of supersymmetric Wilson loops whose expectation value is unity. They are described by calibrated surfaces that end on the boundary of anti de-Sitter space and are pseudo-holomorphic with respect to an almost complex structure on an eight-dimensional slice of AdS_5 x S^5. The regularized area of these surfaces vanishes, in agreement with field theory non-renormalization theorems for the corresponding operators.Comment: 28 pages, 2 figure

    Effects of pressure on spin fluctuations and the exchange interaction in La2CuO4 as determined by two‐magnon Raman scattering (abstract)

    Full text link
    We have measured the two‐magnon Raman scattering spectrum of magnetic La2CuO4 at pressures of up to 100 kbar. Analysis of the moments of the two‐magnon line shape indicates that the renormalization parameters resulting from spin fluctuations are essentially pressure independent in this pressure range. Our results provide the first direct determination of the pressure dependence of the in‐plane exchange coupling constant J. The pressure dependence of J is compared with that of the NĂ©el temperature and discussed in the context of recent theories for quasi‐two‐dimensional magnetic systems.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71024/2/JAPIAU-69-8-5392-1.pd
    • 

    corecore