13,635 research outputs found

    Q & A Experiment to Search for Vacuum Dichroism, Pseudoscalar-Photon Interaction and Millicharged Fermions

    Get PDF
    A number of experiments are underway to detect vacuum birefringence and dichroism -- PVLAS, Q & A, and BMV. Recently, PVLAS experiment has observed optical rotation in vacuum by a magnetic field (vacuum dichroism). Theoretical interpretations of this result include a possible pseudoscalar-photon interaction and the existence of millicharged fermions. Here, we report the progress and first results of Q & A (QED [quantum electrodynamics] and Axion) experiment proposed and started in 1994. A 3.5-m high-finesse (around 30,000) Fabry-Perot prototype detector extendable to 7-m has been built and tested. We use X-pendulums and automatic control schemes developed by the gravitational-wave detection community for mirror suspension and cavity control. To polarize the vacuum, we use a 2.3-T dipole permanent magnet, with 27-mm-diameter clear borehole and 0.6-m field length,. In the experiment, the magnet is rotated at 5-10 rev/s to generate time-dependent polarization signal with twice the rotation frequency. Our ellipsometer/polarization-rotation-detection-system is formed by a pair of Glan-Taylor type polarizing prisms with extinction ratio lower than 10-8 together with a polarization modulating Faraday Cell with/without a quarter wave plate. We made an independent calibration of our apparatus by performing a measurement of gaseous Cotton-Mouton effect of nitrogen. We present our first experimental results and give a brief discussion of our experimental limit on pseudo-scalar-photon interaction and millicharged fermions.Comment: 21 pages, 13 figures, submitted to Modern Physics Letter

    Optimization of MPPT step size in stand-alone solar pumping systems

    Get PDF
    In a stand-alone solar pumping system with a pump driven by an induction motor, the step size in maximum power point tracking (MPPT) methods greatly affects the dynamics and stability of the system. In this paper, we analyze some phenomena appearing in the contrastive experiments which have been carried out for about one year, and give a solution to determine the step size based on system parameters and controller capabilities. The contrastive experiments show that the system performance can be obviously improved by the optimized step size together with an adequate smoothing capacitor. © 2006 IEEE.published_or_final_versio

    Raman spectroscopy of epitaxial graphene on a SiC substrate

    Full text link
    The fabrication of epitaxial graphene (EG) on SiC substrate by annealing has attracted a lot of interest as it may speed up the application of graphene for future electronic devices. The interaction of EG and the SiC substrate is critical to its electronic and physical properties. In this work, Raman spectroscopy was used to study the structure of EG and its interaction with SiC substrate. All the Raman bands of EG blue shift from that of bulk graphite and graphene made by micromechanical cleavage, which was attributed to the compressive strain induced by the substrate. A model containing 13 x 13 honeycomb lattice cells of graphene on carbon nanomesh was constructed to explain the origin of strain. The lattice mismatch between graphene layer and substrate causes the compressive stress of 2.27 GPa on graphene. We also demonstrate that the electronic structures of EG grown on Si and C terminated SiC substrates are quite different. Our experimental results shed light on the interaction between graphene and SiC substrate that are critical to the future applications of EG.Comment: 20 pages, 5 figure

    Incorporating UPFC model into the power system toolbox of theMATLAB for transient stability study

    Get PDF
    In this paper, power frequency model for unified power flow controller (UPFC) is presented with its DC link capacitor dynamics included. A novel interface of UPFC to AC network for transient stability study is then suggested and realised using Power System Toolbox (PST) of MATLAB. The control strategies for UPFC shunt and series elements are also discussed. Computer results on a 4-generator interconnected test power system show that the convergence and accuracy of the suggested interface are challenging and the suggested interface makes it very easy to incorporate the UPFC model into the conventional transient stability programme. The results also show that the UPFC control strategy had strong impacts on the performance of UPFC.published_or_final_versio

    Temperature dependence of electron-spin relaxation in a single InAs quantum dot at zero applied magnetic field

    Full text link
    The temperature-dependent electron spin relaxation of positively charged excitons in a single InAs quantum dot (QD) was measured by time-resolved photoluminescence spectroscopy at zero applied magnetic fields. The experimental results show that the electron-spin relaxation is clearly divided into two different temperature regimes: (i) T < 50 K, spin relaxation depends on the dynamical nuclear spin polarization (DNSP) and is approximately temperature-independent, as predicted by Merkulov et al. (ii) T > about 50 K, spin relaxation speeds up with increasing temperature. A model of two LO phonon scattering process coupled with hyperfine interaction is proposed to account for the accelerated electron spin relaxation at higher temperatures.Comment: 10 pages, 4 figure

    On resonant scatterers as a factor limiting carrier mobility in graphene

    Full text link
    We show that graphene deposited on a substrate has a non-negligible density of atomic scale defects. This is evidenced by a previously unnoticed D peak in the Raman spectra with intensity of about 1% with respect to the G peak. We evaluated the effect of such impurities on electron transport by mimicking them with hydrogen adsorbates and measuring the induced changes in both mobility and Raman intensity. If the intervalley scatterers responsible for the D peak are monovalent, their concentration is sufficient to account for the limited mobilities achievable in graphene on a substrate.Comment: version 2: several comments are taken into account and refs adde

    Temporal and spatial changes of water quality and management strategies of Dianchi Lake in southwest China

    Get PDF
    Temporal and spatial changes to the water quality of Dianchi Lake in southwest China were investigated using monthly monitoring data from 2005 to 2012. Dianchi Lake is divided into two parts, Caohai Lake and Waihai Lake, by a man-made dike. Caohai Lake lies at the north of Dianchi Lake, while Waihai Lake is the main water body of Dianchi Lake and accounts for 96.7% of the whole area of the lake. Based on the analysis of total phosphorus (TP), total nitrogen (TN), and chlorophyll <i>a</i> (Chl <i>a</i>) concentrations, it was determined that, in Caohai Lake, the annual concentrations of these variables ranged from 0.19–1.46 mg L<sup>−1</sup>, 6.11–16.79 mg L<sup>−1</sup>, 0.06–0.14 mg L<sup>−1</sup>, respectively. In addition, the annual concentrations of TP, TN and Chl <i>a</i> in Waihai Lake ranged between 0.13 and 0.20 mg L<sup>−1</sup>, 1.82 and 3.01 mg L<sup>−1</sup>, and 0.04 and 0.09 mg L<sup>−1</sup>, respectively. Cluster analysis (CA) classified the 10 monitoring sites into two clusters (cluster A and cluster B) based on similarities of water quality characteristics. Our data revealed that the current status of water quality within Caohai Lake was much worse than that of Waihai Lake. Water quality was seriously degraded during the economic boom near the period of the "Eleventh Five-Year Plan" (2005–2010), and gradually improved from 2010 to 2012 because of the "standard emission directive to industry". The main factors that influenced the spatial and temporal changes to water quality were natural factors including lake evolution and regional characteristic as well as human factors such as pollution load into the lake and management strategies that were already adopted. Some activities and regulations were implemented to enhance the lake environment by controlling wastewater emissions and establishing regulations to protect the lakes in the Yunnan Province. However, problems with institutional fragmentation (horizontal and vertical), simple treatment methods, low-intensity investment in pollution control, and lack of meaningful endogenous pollution control strategies were still present in the lake management strategy. To solve these problems, suitable control measures are needed, especially considering the current old-age status of Dianchi Lake. The fundamental improvement of the water quality within Caohai Lake was dependent on the measures taken in the upper reaches of the Caohai Watershed, including further recovery of submerged plants, resource utilization by floating plants and the reinforcement of sediment disposal. Management strategies for endogenous pollution in Waihai Lake were mainly dependent on restocking algae-eating fish and the ecological restoration of macrophytes. In this way, the swamping trend and the ageing process that is occurring in Dianchi Lake can be stunted. And the management strategies would be a contribution to the management of water conflicts between mankind and ecosystems in similar lakes

    System Framework for Digital Monitoring of the Construction of Asphalt Concrete Pavement Based on IoT, BeiDou Navigation System, and 5G Technology

    Get PDF
    In the construction of asphalt pavement, poor quality is often the main reason for damage to the pavement, which necessitates the use of monitoring systems during the construction stage. Therefore, this study focuses on building an asphalt concrete pavement construction monitoring system to monitor the construction phase. Through a literature review and semi-structured interviews with industry experts, this paper provides an in-depth understanding of the goals and obstacles of asphalt pavement monitoring and discusses directions for improvement. Subsequently, based on the analysis of the interview results, a system framework for asphalt concrete pavement construction monitoring was constructed, and the system was successfully developed and applied to a highway construction project. The results show that the monitoring system significantly improves the construction quality of asphalt concrete pavement, improves the intelligent level of pavement construction management, and promotes the digital development of highway construction
    corecore