34,417 research outputs found

    Level sequence and splitting identification of closely-spaced energy levels by angle-resolved analysis of the fluorescence light

    Full text link
    The angular distribution and linear polarization of the fluorescence light following the resonant photoexcitation is investigated within the framework of the density matrix and second-order perturbation theory. Emphasis has been placed on "signatures" for determining the level sequence and splitting of intermediate (partially) overlapping resonances, if analyzed as a function of the photon energy of the incident light. Detailed computations within the multiconfiguration Dirac-Fock method have been performed especially for the 1s22s22p63s   Ji=1/2 + γ1 → (1s22s2p63s)13p3/2   J=1/2, 3/2 → 1s22s22p63s   Jf=1/2 + γ21s^{2}2s^{2}2p^{6}3s\;\, J_{i}=1/2 \,+\, \gamma_{1} \:\rightarrow\: (1s^{2}2s2p^{6}3s)_{1}3p_{3/2}\;\, J=1/2, \, 3/2 \:\rightarrow\: 1s^{2}2s^{2}2p^{6}3s\;\, J_{f}=1/2 \,+\, \gamma_{2} photoexcitation and subsequent fluorescence emission of atomic sodium. A remarkably strong dependence of the angular distribution and linear polarization of the γ2\gamma_{2} fluorescence emission is found upon the level sequence and splitting of the intermediate (1s22s2p63s)13p3/2   J=1/2, 3/2(1s^{2}2s2p^{6}3s)_{1}3p_{3/2}\;\, J=1/2, \, 3/2 overlapping resonances owing to their finite lifetime (linewidth). We therefore suggest that accurate measurements of the angular distribution and linear polarization might help identify the sequence and small splittings of closely-spaced energy levels, even if they can not be spectroscopically resolved.Comment: 9 pages, 7 figure

    Surface phase separation in nanosized charge-ordered manganites

    Full text link
    Recent experiments showed that the robust charge-ordering in manganites can be weakened by reducing the grain size down to nanoscale. Weak ferromagnetism was evidenced in both nanoparticles and nanowires of charge-ordered manganites. To explain these observations, a phenomenological model based on surface phase separation is proposed. The relaxation of superexchange interaction on the surface layer allows formation of a ferromagnetic shell, whose thickness increases with decreasing grain size. Possible exchange bias and softening of the ferromagnetic transition in nanosized charge-ordered manganites are predicted.Comment: 4 pages, 3 figure

    Tunable near- to mid-infrared pump terahertz probe spectroscopy in reflection geometry

    Full text link
    Strong-field mid-infrared pump--terahertz (THz) probe spectroscopy has been proven as a powerful tool for light control of different orders in strongly correlated materials. We report the construction of an ultrafast broadband infrared pump--THz probe system in reflection geometry. A two-output optical parametric amplifier is used for generating mid-infrared pulses with GaSe as the nonlinear crystal. The setup is capable of pumping bulk materials at wavelengths ranging from 1.2 μ\mum to 15 μ\mum and beyond, and detecting the subtle, transient photoinduced changes in the reflected electric field of the THz probe at different temperatures. As a demonstration, we present 15 μ\mum pump--THz probe measurements of a bulk EuSbTe3_{3} single crystal. A 0.5%0.5\% transient change in the reflected THz electric field can be clearly resolved. The widely tuned pumping energy could be used in mode-selective excitation experiments and applied to many strongly correlated electron systems.Comment: 4 pages, 4 figure

    Hemodynamic evaluation using four-dimensional flow magnetic resonance imaging for a patient with multichanneled aortic dissection

    Get PDF
    The hemodynamic function of multichanneled aortic dissection (MCAD) requires close monitoring and effective management to avoid potentially catastrophic sequelae. This report describes a 47-year-old man who underwent endovascular repair based on findings from four-dimensional (4D) flow magnetic resonance imaging of an MCAD. The acquired 4D flow data revealed complex, bidirectional flow patterns in the false lumens and accelerated blood flow in the compressed true lumen. The collapsed abdominal true lumen expanded unsatisfactorily after primary tear repair, which required further remodeling with bare stents. This case study demonstrates that hemodynamic analysis using 4D flow magnetic resonance imaging can help understand the complex pathologic changes of MCAD

    Carbon Nanotube AFM Probe Technology

    Get PDF
    • …
    corecore