3,663 research outputs found

    Ferromagnetic insulating phase in Pr{1-x}Ca{x}MnO3

    Full text link
    A ferromagnetic insulating (FM-I) state in Pr0.75Ca0.25MnO3 has been studied by neutron scattering experiment and theoretical calculation. The insulating behavior is robust against an external magnetic field, and is ascribed to neither the phase separation between a ferromagnetic metallic (FM-M) phase and a non-ferromagnetic insulating one, nor the charge ordering. We found that the Jahn-Teller type lattice distortion is much weaker than PrMnO3 and the magnetic interaction is almost isotropic. These features resembles the ferromagnetic metallic state of manganites, but the spin exchange interaction J is much reduced compared to the FM-M state. The theoretical calculation based on the staggered type orbital order well reproduces several features of the spin and orbital state in the FM-I phase.Comment: REVTeX4, 10 pages, 9 figure

    Spin Dynamics of Double-Exchange Manganites with Magnetic Frustration

    Full text link
    This work examines the effects of magnetic frustration due to competing ferromagnetic and antiferromagnetic Heisenberg interactions on the spin dynamics of the double-exchange model. When the local moments are non-colinear, a charge-density wave forms because the electrons prefer to sit on lines of sites that are coupled ferromagnetically. With increasing hopping energy, the local spins become aligned and the average spin-wave stiffness increases. Phase separation is found only within a narrow range of hopping energies. Results of this work are applied to the field-induced jump in the spin-wave stiffness observed in the manganite Pr1x_{1-x}Cax_xMnO3_3 with 0.3x0.40.3 \le x \le 0.4.Comment: 10 pages, 3 figure

    Spin Dynamics of a Canted Antiferromagnet in a Magnetic Field

    Full text link
    The spin dynamics of a canted antiferromagnet with a quadratic spin-wave dispersion near \vq =0 is shown to possess a unique signature. When the anisotropy gap is negligible, the spin-wave stiffness \dsw (\vq, B) = (\omega_{\vq}-B)/q^2 depends on whether the limit of zero field or zero wavevector is taken first. Consequently, \dsw is a strong function of magnetic field at a fixed wavevector. Even in the presence of a sizeable anisotropy gap, the field dependence of both \dsw and the gap energy distinguishes a canted antiferromagnet from a phase-separated mixture containing both ferromagnetic and antiferromagnetic regions.Comment: 10 pages, 3 figure

    Commensurate-Incommensurate transition in the melting process of the orbital ordering in Pr0.5Ca0.5MnO3: neutron diffraction study

    Full text link
    The melting process of the orbital order in Pr0.5Ca0.5MnO3 single crystal has been studied in detail as a function of temperature by neutron diffraction. It is demonstrated that a commensurate-incommensurate (C-IC) transition of the orbital ordering takes place in a bulk sample, being consistent with the electron diffraction studies. The lattice structure and the transport properties go through drastic changes in the IC orbital ordering phase below the charge/orbital ordering temperature Tco/oo, indicating that the anomalies are intimately related to the partial disordering of the orbital order, unlike the consensus that it is related to the charge disordering process. For the same T range, partial disorder of the orbital ordering turns on the ferromagnetic spin fluctuations which were observed in a previous neutron scattering study.Comment: 5 pages, 2 figures, REVTeX, to be published in Phys. Rev.

    Spin dynamical properties and orbital states of the layered perovskite La_2-2x_Sr_1+2x_Mn_2_O_7 (0.3 <= x < 0.5)

    Get PDF
    Low-temperature spin dynamics of the double-layered perovskite La_2-2x_Sr_1+2x_Mn_2_O_7 (LSMO327) was systematically studied in a wide hole concentration range (0.3 <= x < 0.5). The spin-wave dispersion, which is almost perfectly 2D, has two branches due to a coupling between layers within a double-layer. Each branch exhibits a characteristic intensity oscillation along the out-of-plane direction. We found that the in-plane spin stiffness constant and the gap between the two branches strongly depend on x. By fitting to calculated dispersion relations and cross sections assuming Heisenberg models, we have obtained the in-plane (J_para), intra-bilayer (J_perp) and inter-bilayer (J') exchange interactions at each x. At x=0.30, J_para=-4meV and J_perp=-5meV, namely almost isotropic and ferromagnetic. Upon increasing x, J_perp rapidly approaches zero while |J_para| increases slightly, indicating an enhancement of the planar magnetic anisotropy. At x=0.48, J_para reaches -9meV, while J_perp turns to +1meV indicating an antiferromagnetic interaction. Such a drastic change of the exchange interactions can be ascribed to the change of the relative stability of the d_x^2-y^2 and d_3z^2-r^2 orbital states upon doping. However, a simple linear combination of the two states results in an orbital state with an orthorhombic symmetry, which is inconsistent with the tetragonal symmetry of the crystal structure. We thus propose that an ``orbital liquid'' state realizes in LSMO327, where the charge distribution symmetry is kept tetragonal around each Mn site.Comment: 10 pages including 7 figure

    Double Exchange in a Magnetically Frustrated System

    Full text link
    This work examines the magnetic order and spin dynamics of a double-exchange model with competing ferromagnetic and antiferromagnetic Heisenberg interactions between the local moments. The Heisenberg interactions are periodically arranged in a Villain configuration in two dimensions with nearest-neighbor, ferromagnetic coupling JJ and antiferromagnetic coupling ηJ-\eta J. This model is solved at zero temperature by performing a 1/S1/\sqrt{S} expansion in the rotated reference frame of each local moment. When η\eta exceeds a critical value, the ground state is a magnetically frustrated, canted antiferromagnet. With increasing hopping energy tt or magnetic field BB, the local moments become aligned and the ferromagnetic phase is stabilized above critical values of tt or BB. In the canted phase, a charge-density wave forms because the electrons prefer to sit on lines of sites that are coupled ferromagnetically. Due to a change in the topology of the Fermi surface from closed to open, phase separation occurs in a narrow range of parameters in the canted phase. In zero field, the long-wavelength spin waves are isotropic in the region of phase separation. Whereas the average spin-wave stiffness in the canted phase increases with tt or η\eta , it exhibits a more complicated dependence on field. This work strongly suggests that the jump in the spin-wave stiffness observed in Pr1x_{1-x}Cax_xMnO3_3 with 0.3x0.40.3 \le x \le 0.4 at a field of 3 T is caused by the delocalization of the electrons rather than by the alignment of the antiferromagnetic regions.Comment: 28 pages, 12 figure

    A geometric Newton method for Oja's vector field

    Full text link
    Newton's method for solving the matrix equation F(X)AXXXTAX=0F(X)\equiv AX-XX^TAX=0 runs up against the fact that its zeros are not isolated. This is due to a symmetry of FF by the action of the orthogonal group. We show how differential-geometric techniques can be exploited to remove this symmetry and obtain a ``geometric'' Newton algorithm that finds the zeros of FF. The geometric Newton method does not suffer from the degeneracy issue that stands in the way of the original Newton method
    corecore