1,236 research outputs found
The Initial Conditions for Gravitational Collapse of a Core: An Extremely Young Low-Mass Class 0 Protostar GF9-2
We present a study of the natal core harboring the class 0 protostar GF9-2 in
the filamentary dark cloud GF 9 (d = 200 pc). GF9-2 stands unique in the sense
that it shows H2O maser emission, a clear signpost of protostar formation,
whereas it does not have a high-velocity large-scale molecular outflow
evidenced by our deep search for CO wing emission. These facts indicate that
GF9-2 core is early enough after star formation so that it still retains some
information of initial conditions for collapse. Our 350 um dust continuum
emission image revealed the presence of a protostellar envelope in the center
of a molecular core. The mass of the envelope is ~0.6 Msun from the 350 um flux
density, while LTE mass of the core is ~3 Msun from moleuclar line
observations. Combining visibility data from the OVRO mm-array and the 45m
telescope, we found that the core has a radial density profile of
for 0.003 < r/pc < 0.08 region. Molecular line data
analysis revealed that the velocity width of the core gas increases
inward,while the outermost region maintains a velocity dispersion of a few
times of the ambient sound speed. The broadened velocity width can be
interpreted as infall. Thus, the collapse in GF9-2 is likely to be described by
an extension of the Larson-Penston solution for the period after formation of a
central star. We derived the current mass accretion rate of ~3E-05 Msun/year
from infall velocity of ~ 0.3 km/s at r~ 7000 AU. All results suggest that
GF9-2 core has been undergoing gravitational collapse for ~ 5000 years since
the formation of central protostar(s), and that the unstable state initiated
the collapse ~2E+05 years (the free-fall time) ago.Comment: ApJ Accepted. The preprint including figures with the original
quality is available at http://subarutelescope.org/staff/rsf/publication.htm
A 1000 AU Scale Molecular Outflow Driven by a Protostar with an age of <4000 Years
To shed light on the early phase of a low-mass protostar formation process,
we conducted interferometric observations towards a protostar GF9-2 using the
CARMA and SMA. The observations have been carried out in the CO J=3-2 line and
in the continuum emission at the wavelengths of 3 mm, 1 mm and 850 micron. All
the continuum images detected a single point-like source with a radius of
250+/-80 AU at the center of the previously known ~3 Msun molecular cloud core.
A compact emission is detected towards the object at the Spitzer MIPS and IRAC
bands as well as the four bands at the WISE. Our spectroscopic imaging of the
CO line revealed that the continuum source is driving a 1000 AU scale molecular
outflow, including a pair of lobes where a collimated "higher" velocity red
lobe exists inside a poorly collimated "lower" velocity red lobe. These lobes
are rather young and the least powerful ones so far detected. A protostellar
mass of M~<0.06 Msun was estimated using an upper limit of the protostellar age
of (4+/-1)x10^3 yrs and an inferred non-spherical steady mass accretion rate of
~10^{-5} Msun/yr. Together with results from an SED analysis, we discuss that
the outflow system is driven by a protostar whose surface temperature
of~3,000K, and that the natal cloud core is being dispersed by the outflow.Comment: 27 pages, 14 figures, accepted for publication in Astrophysical
Journa
Low-Mass Star Forming Cores in the GF9 Filament
We carried out an unbiased mapping survey of dense molecular cloud cores
traced by the NH3 (1,1) and (2,2) inversion lines in the GF9 filament which
contains an extremely young low-mass protostar GF9-2 (Furuya et al. 2006, ApJ,
653, 1369). The survey was conducted using the Nobeyama 45m telescope over a
region of ~1.5 deg with an angular resolution of 73". The large-scale map
revealed that the filament contains at least 7 dense cores, as well as 3
possible ones, located at regular intervals of ~0.9 pc. Our analysis shows that
these cores have kinetic temperatures of 10 K and LTE-masses of 1.8
-- 8.2 Msun, making them typical sites of low-mass star formation. All the
identified cores are likely to be gravitationally unstable because their
LTE-masses are larger than their virial masses. Since the LTE-masses and
separations of the cores are consistent with the Jeans masses and lengths,
respectively, for the low-density ambient gas, we argue that the identified
cores have formed via the gravitational fragmentation of the natal filamentary
cloud.Comment: accepted by pas
High Angular Resolution, Sensitive CS J=2-1 and J=3-2 Imaging of the Protostar L1551 NE: Evidence for Outflow-Triggered Star Formation ?
High angular resolution and sensitive aperture synthesis observations of CS
() and CS () emissions toward L1551 NE, the second brightest
protostar in the Taurus Molecular Cloud, made with the Nobeyama Millimeter
Array are presented. L1551 NE is categorized as a class 0 object deeply
embedded in the red-shifted outflow lobe of L1551 IRS 5. Previous studies of
the L1551 NE region in CS emission revealed the presence of shell-like
components open toward L1551 IRS 5, which seem to trace low-velocity shocks in
the swept-up shell driven by the outflow from L1551 IRS 5. In this study,
significant CS emission around L1551 NE was detected at the eastern tip of the
swept-up shell from = 5.3 km s to 10.1 km s, and
the total mass of the dense gas is estimated to be 0.18 0.02 .
Additionally, the following new structures were successfully revealed: a
compact disklike component with a size of 1000 AU just at L1551 NE,
an arc-shaped structure around L1551 NE, open toward L1551 NE, with a size of
AU, i.e., a bow shock, and a distinct velocity gradient of the
dense gas, i.e., deceleration along the outflow axis of L1551 IRS 5. These
features suggest that the CS emission traces the post-shocked region where the
dense gas associated with L1551 NE and the swept-up shell of the outflow from
L1551 IRS 5 interact. Since the age of L1551 NE is comparable to the timescale
of the interaction, it is plausible that the formation of L1551 NE was induced
by the outflow impact. The compact structure of L1551 NE with a tiny envelope
was also revealed, suggesting that the outer envelope of L1551 NE has been
blown off by the outflow from L1551 IRS 5.Comment: 29 pages, 12 figures, Accepted for Publication in the Astrophysical
Journa
- …