27 research outputs found

    Adiabatic Effective Action for Vortices in Neutral and Charged Superfluids

    Full text link
    Adiabatic effective action for vortices in neutral and charged superfluids at zero temperature are calculated using the topological Landau-Ginzburg theory recently proposed by Hatsuda, Yahikozawa, Ao and Thouless, and vortex dynamics are examined. The Berry phase term arising in the effective action naturally yields the Magnus force in both neutral and charged superfluids. It is shown that in neutral superfluid there is only one degree of freedom, namely the center of vorticities, and the vortex energy is proportinal to the sum of all vorticities so that it is finite only for the vanishing total vorticity of the system. On the other hand the effective mass and the vortex energy for a vortex in charged superfluids are defined individually as expected. The effects of the vortex core on these quantities are also estimated. The possible depinning scenario which is governed by the Magnus force and the inertial mass is also discussed.Comment: 26 page

    Emergent AdS3 and BTZ Black Hole from Weakly Interacting Hot 2d CFT

    Full text link
    We investigate emergent holography of weakly coupled two-dimensional hyperK\"ahler sigma model on cotangent bundle of (N-1)-dimensional complex projective space at zero and finite temperature. The sigma model is motivated by the spacetime conformal field theory dual to the near-horizon geometry of Q1 D1-brane bound to Q5 D5-brane wrapped on four-torus times circle, where N = Q1*Q5. The sigma model admits nontrivial instanton for all N greater than or equal to 2, which serves as a local probe of emergent holographic spacetime. We define emergent geometry of the spacetime as that of instanton moduli space via Hitchin's information metric. At zero temperature, we find that emergent geometry is AdS3. At finite temperature, time-periodic instanton is mappable to zero temperature instanton via conformal transformation. Utilizing the transformation, we show that emergent geometry is precisely that of the non-extremal, non-rotating BTZ black hole.Comment: 12 pages, no figure, JHEP.cls; v2. typos correcte

    Information metric from a linear sigma model

    Full text link
    The idea that a spacetime metric emerges as a Fisher-Rao `information metric' of instanton moduli space has been examined in several field theories such as the Yang-Mills theories and nonlinear sigma models. In this brief paper, we report that the flat Euclidean or Minkowskian metric, rather than an anti-de Sitter metric that generically emerges from instanton moduli spaces, can be obtained as the Fisher-Rao metric from a non-trivial solution of the massive Klein-Gordon field (a linear sigma model). This realization of the flat space from the simple field theory would be useful to investigate the ideas that relate the spacetime geometry with the information geometry.Comment: 8 pages, 1 figure, to appear in PR

    Topological Landau-Ginzburg Theory for Vortices in Superfluid 4^4He

    Full text link
    We propose a new Landau-Ginzburg theory for arbitrarily shaped vortex strings in superfluid 4^4He. The theory contains a topological term and directly describes vortex dynamics. We introduce gauge fields in order to remove singularities from the Landau-Ginzburg order parameter of the superfluid, so that two kinds of gauge symmetries appear, making the continuity equation and conservation of the total vorticity manifest. The topological term gives rise to the Berry phase term in the vortex mechanical actions.Comment: LATEX, 9 page

    Manifestly Covariant Quantization of Topologically Massive Abelian Gauge Theory

    No full text

    Major linear antibody epitopes and capsid proteins differentially induce protective immunity against Theiler's virus-induced demyelinating disease.

    No full text
    Theiler's murine encephalomyelitis virus-induced immunologically mediated demyelinating disease (TMEV-IDD) in susceptible mice provides a relevant infectious model for multiple sclerosis. Previously, we have identified six major linear antibody epitopes on the viral capsid proteins. In this study, we utilized fusion proteins containing individual capsid proteins and synthetic peptides containing the linear antibody epitopes to determine the potential role of antibody response in the course of virus-induced demyelination. Preimmunization of susceptible mice with VPI and VP2 fusion proteins, but not VP3, resulted in the protection from subsequent development of TMEV-IDD. Mice free of clinical symptoms following preimmunizations with fusion proteins displayed high levels of antibodies to the capsid proteins corresponding to the immunogens. In contrast, the level of antibodies to a particular linear epitope, A1C (VP1(262-276)), capable of efficiently neutralizing virus in vitro increased with the progression of disease. Further immunization with synthetic peptides containing individual antibody epitopes indicated that antibodies to the epitopes are differentially effective in protecting from virus-induced demyelination. Taken together, these results suggest that antibodies to only certain linear epitopes are protective and such protection may be restricted during the early stages of viral infection
    corecore