76 research outputs found

    Formation of "Lightnings" in a Neutron Star Magnetosphere and the Nature of RRATs

    Full text link
    The connection between the radio emission from "lightnings" produced by the absorption of high-energy photons from the cosmic gamma-ray background in a neutron star magnetosphere and radio bursts from rotating radio transients (RRATs) is investigated. The lightning length reaches 1000 km; the lightning radius is 100 m and is comparable to the polar cap radius. If a closed magnetosphere is filled with a dense plasma, then lightnings are efficiently formed only in the region of open magnetic field lines. For the radio emission from a separate lightning to be observed, the polar cap of the neutron star must be directed toward the observer and, at the same time, the lightning must be formed. The maximum burst rate is related to the time of the plasma outflow from the polar cap region. The typical interval between two consecutive bursts is ~100 s. The width of a single radio burst can be determined both by the width of the emission cone formed by the lightning emitting regions at some height above the neutron star surface and by a finite lightning lifetime. The width of the phase distribution for radio bursts from RRATs, along with the integrated pulse width, is determined by the width of the bundle of open magnetic field lines at the formation height of the radio emission. The results obtained are consistent with the currently available data and are indicative of a close connection between RRATs, intermittent pulsars, and extreme nullers.Comment: 24 pages, no figures, references update

    Absorption of Gamma-Ray Photons in a Vacuum Neutron Star Magnetosphere: I. Electron-Positron Pair Production

    Full text link
    The production of electron-positron pairs in a vacuum neutron star magnetosphere is investigated for both low (compared to the Schwinger one) and high magnetic fields. The case of a strong longitudinal electric field where the produced electrons and positrons acquire a stationary Lorentz factor in a short time is considered. The source of electron-positron pairs has been calculated with allowance made for the pair production by curvature and synchrotron photons. Synchrotron photons are shown to make a major contribution to the total pair production rate in a weak magnetic field. At the same time, the contribution from bremsstrahlung photons may be neglected. The existence of a time delay due to the finiteness of the electron and positron acceleration time leads to a great reduction in the electron-positron plasma generation rate compared to the case of a zero time delay. The effective local source of electron-positron pairs has been constructed. It can be used in the hydrodynamic equations that describe the development of a cascade after the absorption of a photon from the cosmic gamma-ray background in a neutron star magnetosphere.Comment: 29 pages, 1 figur

    On the possible observational manifestation of supernova shock impact on the neutron star magnetosphere

    Full text link
    Impact of supernova explosion on the neutron star magnetosphere in a massive binary system is considered. The supernova shock striking the NS magnetosphere filled with plasma can lead to the formation of a magnetospheric tail with significant magnetic energy. The magnetic field reconnection in the current sheet formed can convert the magnetic energy stored in the tail into kinetic energy of accelerated charged particles. Plasma instabilities excited by beams of relativistic particles can lead to the formation of a short pulse of coherent radio emission with parameters similar to those of the observed bright extragalactic millisecond radio burst (Lorimer et al. 2007).Comment: 8 pages, Astron. Lett. in pres

    On the Possibility of the Detection of Extinct Radio Pulsars

    Full text link
    We explore the possibilities for detecting pulsars that have ceased to radiate in the radio band. We consider two models: the model with hindered particle escape from the pulsar surface (first suggested by Ruderman and Sutherland 1975) and the model with free particle escape (Arons 1981; Mestel 1999). In the model with hindered particle escape, the number of particles that leave the pulsar magnetosphere is small and their radiation cannot be detected with currently available instruments. At the same time, for the free particle escape model, both the number of particles and the radiation intensity are high enough for such pulsars to be detectable with the presently available receivers such as GLAST and AGILE spacecrafts. It is also possible that extinct radio pulsars can be among the unidentified EGRET sources.Comment: 5 pages, 1 figure corrected version of the paper that was published in Astronomy Letter

    Determination of the geometry of the PSR B1913+16 system by geodetic precession

    Get PDF
    New observations of the binary pulsar B1913+16 are presented. Since 1978 the leading component of the pulse profile has weakend dramatically by about 40%. For the first time, a decrease in component separation is observed, consistent with expectations of geodetic precession. Assuming the correctness of general relativity and a circular hollow-cone like beam, a fully consistent model for the system geometry is developed. The misalignment angle between pulsar spin and orbital momentum is determined giving direct evidence for an asymmetric kick during the second supernova explosion. It is argued that the orbital inclination angle is 132\fdg8 (rather than 47\fdg2). A prediction of this model is that PSR B1913+16 will not be observable anymore after the year 2025.Comment: 16 pages, incl. 5 figures, accepted for publication in Ap

    Utilization of photon orbital angular momentum in the low-frequency radio domain

    Get PDF
    We show numerically that vector antenna arrays can generate radio beams which exhibit spin and orbital angular momentum characteristics similar to those of helical Laguerre-Gauss laser beams in paraxial optics. For low frequencies (< 1 GHz), digital techniques can be used to coherently measure the instantaneous, local field vectors and to manipulate them in software. This opens up for new types of experiments that go beyond those currently possible to perform in optics, for information-rich radio physics applications such as radio astronomy, and for novel wireless communication concepts.Comment: 4 pages, 5 figures. Changed title, identical to the paper published in PR
    corecore