14,860 research outputs found

    Nonleptonic two-body charmless B decays involving a tensor meson in the Perturbative QCD Approach

    Full text link
    Two-body charmless hadronic B decays involving a light tensor meson in the final states are studied in the perturbative QCD approach based on kTk_T factorization. From our calculations, we find that the decay branching ratios for color allowed tree-dominated decays B→a20π+B\to a_{2}^{0}\pi^{+} and B→a2−π+B\to a_{2}^{-}\pi^{+} modes are of order 10−610^{-6} and 10−510^{-5}, respectively. While other color suppressed tree-dominated decays have very small branching ratios. In general, the branching ratios of most decays are in the range of 10−510^{-5} to 10−810^{-8}, which are bigger by one or two orders of magnitude than those predictions obtained in Isgur-Scora-Grinstein-Wise II model and in the covariant light-front approach, but consistent with the recent experimental measurements and the QCD factorization calculations. Since the decays with a tensor meson emitted from vacuum are prohibited in naive factorization, the contributions of nonfactorizable and annihilation diagrams are very important to these decays, which are calculable in our perturbative QCD approach. We also give predictions to the direct CP asymmetries, some of which are large enough for the future experiments to measure. Because we considered the mixing between f2f_{2} and f2′f_{2}', the decay rates are enhanced significantly for some decays involving f2′f_{2}^{\prime} meson, even with a small mixing angle.Comment: 26 pages, 2 figure

    Self-Dual Vortices in the Fractional Quantum Hall System

    Full text link
    Based on the ϕ\phi-mapping theory, we obtain an exact Bogomol'nyi self-dual equation with a topological term, which is ignored in traditional self-dual equation, in the fractional quantum Hall system. It is revealed that there exist self-dual vortices in the system. We investigate the inner topological structure of the self-dual vortices and show that the topological charges of the vortices are quantized by Hopf indices and Brouwer degrees. Furthermore, we study the branch processes in detail. The vortices are found generating or annihilating at the limit points and encountering, splitting or merging at the bifurcation points of the vector field ϕ⃗\vec\phi.Comment: 13 pages 10 figures. accepted by IJMP

    Stability Of contact discontinuity for steady Euler System in infinite duct

    Full text link
    In this paper, we prove structural stability of contact discontinuities for full Euler system

    Strong decays of heavy baryons in Bethe-Salpeter formalism

    Full text link
    In this paper we study the properties of diquarks (composed of uu and/or dd quarks) in the Bethe-Salpeter formalism under the covariant instantaneous approximation. We calculate their BS wave functions and study their effective interaction with the pion. Using the effective coupling constant among the diquarks and the pion, in the heavy quark limit mQ→∞m_Q\to\infty, we calculate the decay widths of ΣQ(∗)\Sigma_Q^{(*)} (Q=c,bQ=c,b) in the BS formalism under the covariant instantaneous approximation and then give predictions of the decay widths Γ(Σb(∗)→Λb+π)\Gamma(\Sigma_b^{(*)}\to\Lambda_b+\pi).Comment: 41 pages, 1 figure, LaTex2e, typos correcte

    Detecting Extra Dimension by Helium-like Ions

    Full text link
    Considering that gravitational force might deviate from Newton's inverse-square law and become much stronger in small scale, we present a method to detect the possible existence of extra dimensions in the ADD model. By making use of an effective variational wave function, we obtain the nonrelativistic ground energy of a helium atom and its isoelectronic sequence. Based on these results, we calculate gravity correction of the ADD model. Our calculation may provide a rough estimation about the magnitude of the corresponding frequencies which could be measured in later experiments.Comment: 8 pages, no figures, accepted by Mod. Phys. Lett.

    New Insights Into Phanerozoic Tectonics Of South China: Part 1, Polyphase Deformation In The Jiuling And Lianyunshan Domains Of The Central Jiangnan Orogen

    Get PDF
    The central Jiangnan Orogen, genetically formed by the Proterozoic Yangtze-Cathaysia collision, presents as a composite structural feature in the Phanerozoic with multiple ductile and brittle fabrics whose geometries, kinematics, and ages are crucial to decipher the tectonic evolution of south China. New structural observations coupled with thermochronological and geochronological studies of these fabrics document four main stages of deformation. The earliest stage in early Paleozoic time (460–420Ma) corresponds to combined E-trending dextral and northwest directed thrust shearing that was variably partitioned in anastomosing high-strain zones under greenschist-facies conditions (~400–500°C), related to the continued Yangtze-Cathaysia convergence externally driven by the suturing of south China with Australia. This event was heterogeneously overprinted by the second stage characterized by ~E-oriented folding in middle Triassic time, geodynamically resulting from the continental collision of south China with Indochina and North China. The third stage was locally developed by northwest and southeast vergent thrusts that truncated ~E-oriented folds in the Late Jurassic, due to northwestward subduction of the Paleo-Pacific plate. The latest stage involved normal faulting and tectonic unroofing in Cretaceous time, which resulted in basin opening and reset footwall 40Ar/39Ar ages in proximity to the Hengshan detachment fault, associated with roll-back of the subducting Paleo-Pacific plate.published_or_final_versio

    Magnetic transitions and magnetodielectric effect in the antiferromagnet SrNdFeO4_4

    Full text link
    We investigated the magnetic phase diagram of single crystals of SrNdFeO4_{4} by measuring the magnetic properties, the specific heat and the dielectric permittivity. The system has two magnetically active ions, Fe3+^{3+} and Nd3+^{3+}. The Fe3+^{3+} spins are antiferromagnetically ordered below 360 K with the moments lying in the ab-plane, and undergo a reorientation transition at about 35-37 K to an antiferromagnetic order with the moments along the c-axis. A short-range, antiferromagnetic ordering of Nd3+^{3+} along the c-axis was attributed to the reorientation of Fe3+^{3+} followed by a long-range ordering at lower temperature [S. Oyama {\it et al.} J. Phys.: Condens. Matter. {\bf 16}, 1823 (2004)]. At low temperatures and magnetic fields above 8 T, the Nd3+^{3+} moments are completely spin-polarized. The dielectric permittivity also shows anomalies associated with spin configuration changes, indicating that this compound has considerable coupling between spin and lattice. A possible magnetic structure is proposed to explain the results.Comment: 8 pages, 10 figures, submitted to PR
    • …
    corecore