131 research outputs found
IL1B and DEFB1 Polymorphisms Increase Susceptibility to Invasive Mold Infection After Solid-Organ Transplantation.
BACKGROUND: Single-nucleotide polymorphisms (SNPs) in immune genes have been associated with susceptibility to invasive mold infection (IMI) among hematopoietic stem cell but not solid-organ transplant (SOT) recipients.
METHODS: Twenty-four SNPs from systematically selected genes were genotyped among 1101 SOT recipients (715 kidney transplant recipients, 190 liver transplant recipients, 102 lung transplant recipients, 79 heart transplant recipients, and 15 recipients of other transplants) from the Swiss Transplant Cohort Study. Association between SNPs and the end point were assessed by log-rank test and Cox regression models. Cytokine production upon Aspergillus stimulation was measured by enzyme-linked immunosorbent assay in peripheral blood mononuclear cells (PBMCs) from healthy volunteers and correlated with relevant genotypes.
RESULTS: Mold colonization (n = 45) and proven/probable IMI (n = 26) were associated with polymorphisms in the genes encoding interleukin 1β (IL1B; rs16944; recessive mode, P = .001 for colonization and P = .00005 for IMI, by the log-rank test), interleukin 1 receptor antagonist (IL1RN; rs419598; P = .01 and P = .02, respectively), and β-defensin 1 (DEFB1; rs1800972; P = .001 and P = .0002, respectively). The associations with IL1B and DEFB1 remained significant in a multivariate regression model (P = .002 for IL1B rs16944; P = .01 for DEFB1 rs1800972). The presence of 2 copies of the rare allele of rs16944 or rs419598 was associated with reduced Aspergillus-induced interleukin 1β and tumor necrosis factor α secretion by PBMCs.
CONCLUSIONS: Functional polymorphisms in IL1B and DEFB1 influence susceptibility to mold infection in SOT recipients. This observation may contribute to individual risk stratification
IL28B genotype is associated with cirrhosis or transition to cirrhosis in treatment-naive patients with chronic HCV genotype 1 infection: the international observational Gen-C study
Background and purpose: Contradictory data exist on the association between host interleukin-28B (IL28B) rs12979860 genotype and liver fibrosis in patients with chronic hepatitis C (CHC). This large, international, observational study (NCT01675427/MV25600) investigated relationships between IL28B rs12979860 genotype and liver fibrosis stage in CHC patients.
Methods: A total of 3003 adult, treatment-naive CHC patients were enrolled into the study. Patients made one study visit to provide a blood sample for genotyping; other data were obtained from medical records.
Results: 2916 patients comprised the analysis population; the majority were enrolled in Europe (n = 2119), were Caucasian (n = 2582) and had hepatitis C virus (HCV) genotype (G) 1 infection (n = 1702) (G2 = 323, G3 = 574, G4 = 260). Distribution of IL28B genotypes varied according to region of enrolment, patient ethnicity and HCV genotype. A significant association was observed between increasing number of IL28B T alleles and the prevalence of cirrhosis/transition to cirrhosis (based on biopsy or non-invasive assessments) in G1-infected patients (CC = 22.2% [111/499], CT = 27.5% [255/928], TT = 32.3% [87/269]; p = 0.0018). The association was significant in the large subgroup of European Caucasian G1 patients (n = 1245) but not in the smaller Asian (n = 25), Latin American (n = 137) or Middle Eastern (n = 289) G1 subgroups. IL28B genotype was not associated with liver fibrosis stage in patients with HCV G2, G3 or G4 infection.
Conclusion: This large, international study found that IL28B rs12979860 genotype is significantly associated with liver fibrosis stage in CHC patients with HCV G1 infection. This association was evident in European Caucasians but not in G1-infected patients from Asia, Latin America or the Middle EastF. Hoffmann-La Roche Ltd, Basel, Switzerlan
Switching on the Lights for Gene Therapy
Strategies for non-invasive and quantitative imaging of gene expression in vivo have been developed over the past decade. Non-invasive assessment of the dynamics of gene regulation is of interest for the detection of endogenous disease-specific biological alterations (e.g., signal transduction) and for monitoring the induction and regulation of therapeutic genes (e.g., gene therapy). To demonstrate that non-invasive imaging of regulated expression of any type of gene after in vivo transduction by versatile vectors is feasible, we generated regulatable herpes simplex virus type 1 (HSV-1) amplicon vectors carrying hormone (mifepristone) or antibiotic (tetracycline) regulated promoters driving the proportional co-expression of two marker genes. Regulated gene expression was monitored by fluorescence microscopy in culture and by positron emission tomography (PET) or bioluminescence (BLI) in vivo. The induction levels evaluated in glioma models varied depending on the dose of inductor. With fluorescence microscopy and BLI being the tools for assessing gene expression in culture and animal models, and with PET being the technology for possible application in humans, the generated vectors may serve to non-invasively monitor the dynamics of any gene of interest which is proportionally co-expressed with the respective imaging marker gene in research applications aiming towards translation into clinical application
Water Availability Is the Main Climate Driver of Neotropical Tree Growth
• Climate models for the coming century predict rainfall reduction in the Amazonian region, including change in water availability for tropical rainforests. Here, we test the extent to which climate variables related to water regime, temperature and irradiance shape the growth trajectories of neotropical trees. • We developed a diameter growth model explicitly designed to work with asynchronous climate and growth data. Growth trajectories of 205 individual trees from 54 neotropical species censused every 2 months over a 4-year period were used to rank 9 climate variables and find the best predictive model. • About 9% of the individual variation in tree growth was imputable to the seasonal variation of climate. Relative extractable water was the main predictor and alone explained more than 60% of the climate effect on tree growth, i.e. 5.4% of the individual variation in tree growth. Furthermore, the global annual tree growth was more dependent on the diameter increment at the onset of the rain season than on the duration of dry season. • The best predictive model included 3 climate variables: relative extractable water, minimum temperature and irradiance. The root mean squared error of prediction (0.035 mm.d–1) was slightly above the mean value of the growth (0.026 mm.d–1). • Amongst climate variables, we highlight the predominant role of water availability in determining seasonal variation in tree growth of neotropical forest trees and the need to include these relationships in forest simulators to test, in silico, the impact of different climate scenarios on the future dynamics of the rainforest
TRY plant trait database - enhanced coverage and open access
Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Recommended from our members
Rate of tree carbon accumulation increases continuously with tree size
Forests are major components of the global carbon cycle, providing
substantial feedback to atmospheric greenhouse gas concentrations¹.
Our ability to understand and predict changes in the forest carbon
cycle—particularly net primary productivity and carbon storage—increasingly relies on models that represent biological processes
across several scales of biological organization, from tree leaves to
forest stands[superscript 2,3]. Yet, despite advances in our understanding of productivity
at the scales of leaves and stands, no consensus exists about
the nature of productivity at the scale of the individual tree[superscript 4–7], in
part because we lack a broad empirical assessment of whether rates
of absolute tree mass growth (and thus carbon accumulation) decrease,
remain constant, or increase as trees increase in size and age. Here we
present a global analysis of 403 tropical and temperate tree species,
showing that for most species mass growth rate increases continuously
with tree size. Thus, large, old trees do not act simply as senescent
carbon reservoirs but actively fix large amounts of carbon
compared to smaller trees; at the extreme, a single big tree can add
the same amount of carbon to the forest within a year as is contained
in an entire mid-sized tree. The apparent paradoxes of individual
tree growth increasing with tree size despite declining leaf-level[superscript 8–10]
and stand-level¹⁰ productivity can be explained, respectively, by
increases in a tree’s total leaf area that outpace declines in productivity
per unit of leaf area and, among other factors, age-related
reductions in population density. Our results resolve conflicting
assumptions about the nature of tree growth, inform efforts to understand
and model forest carbon dynamics, and have additional implications
for theories of resource allocation¹¹ and plant senescence¹²
CNV-association meta-analysis in 191,161 European adults reveals new loci associated with anthropometric traits
There are few examples of robust associations between rare copy number variants (CNVs) and complex continuous human traits. Here we present a large-scale CNV association meta-analysis on anthropometric traits in up to 191,161 adult samples from 26 cohorts. The study reveals five CNV associations at 1q21.1, 3q29, 7q11.23, 11p14.2, and 18q21.32 and confirms two known loci at 16p11.2 and 22q11.21, implicating at least one anthropometric trait. The discovered CNVs are recurrent and rare (0.01-0.2%), with large effects on height (> 2.4 cm), weight ( 5 kg), and body mass index (BMI) (> 3.5 kg/m(2)). Burden analysis shows a 0.41 cm decrease in height, a 0.003 increase in waist-to-hip ratio and increase in BMI by 0.14 kg/m2 for each Mb of total deletion burden (P = 2.5 x 10(-10), 6.0 x 10(-5), and 2.9 x 10(-3)). Our study provides evidence that the same genes (e.g., MC4R, FIBIN, and FMO5) harbor both common and rare variants affecting body size and that anthropometric traits share genetic loci with developmental and psychiatric disorders
Somatic mosaicism and common genetic variation contribute to the risk of very-early-onset inflammatory bowel disease
Abstract: Very-early-onset inflammatory bowel disease (VEO-IBD) is a heterogeneous phenotype associated with a spectrum of rare Mendelian disorders. Here, we perform whole-exome-sequencing and genome-wide genotyping in 145 patients (median age-at-diagnosis of 3.5 years), in whom no Mendelian disorders were clinically suspected. In five patients we detect a primary immunodeficiency or enteropathy, with clinical consequences (XIAP, CYBA, SH2D1A, PCSK1). We also present a case study of a VEO-IBD patient with a mosaic de novo, pathogenic allele in CYBB. The mutation is present in ~70% of phagocytes and sufficient to result in defective bacterial handling but not life-threatening infections. Finally, we show that VEO-IBD patients have, on average, higher IBD polygenic risk scores than population controls (99 patients and 18,780 controls; P < 4 × 10−10), and replicate this finding in an independent cohort of VEO-IBD cases and controls (117 patients and 2,603 controls; P < 5 × 10−10). This discovery indicates that a polygenic component operates in VEO-IBD pathogenesis
- …