19,255 research outputs found

    Checking the transverse Ward-Takahashi relation at one loop order in 4-dimensions

    Full text link
    Some time ago Takahashi derived so called {\it transverse} relations relating Green's functions of different orders to complement the well-known Ward-Green-Takahashi identities of gauge theories by considering wedge rather than inner products. These transverse relations have the potential to determine the full fermion-boson vertex in terms of the renormalization functions of the fermion propagator. He & Yu have given an indicative proof at one-loop level in 4-dimensions. However, their construct involves the 4th rank Levi-Civita tensor defined only unambiguously in 4-dimensions exactly where the loop integrals diverge. Consequently, here we explicitly check the proposed transverse Ward-Takahashi relation holds at one loop order in dd-dimensions, with d=4+ϵd=4+\epsilon.Comment: 20 pages, 3 figures This version corrects and clarifies the previous result. This version has been submitted for publicatio

    Commuting Quantum Circuits with Few Outputs are Unlikely to be Classically Simulatable

    Full text link
    We study the classical simulatability of commuting quantum circuits with n input qubits and O(log n) output qubits, where a quantum circuit is classically simulatable if its output probability distribution can be sampled up to an exponentially small additive error in classical polynomial time. First, we show that there exists a commuting quantum circuit that is not classically simulatable unless the polynomial hierarchy collapses to the third level. This is the first formal evidence that a commuting quantum circuit is not classically simulatable even when the number of output qubits is exponentially small. Then, we consider a generalized version of the circuit and clarify the condition under which it is classically simulatable. Lastly, we apply the argument for the above evidence to Clifford circuits in a similar setting and provide evidence that such a circuit augmented by a depth-1 non-Clifford layer is not classically simulatable. These results reveal subtle differences between quantum and classical computation.Comment: 19 pages, 6 figures; v2: Theorems 1 and 3 improved, proofs modifie

    Unexpected Dirac-Node Arc in the Topological Line-Node Semimetal HfSiS

    Full text link
    We have performed angle-resolved photoemission spectroscopy on HfSiS, which has been predicted to be a topological line-node semimetal with square Si lattice. We found a quasi-two-dimensional Fermi surface hosting bulk nodal lines, alongside the surface states at the Brillouin-zone corner exhibiting a sizable Rashba splitting and band-mass renormalization due to many-body interactions. Most notably, we discovered an unexpected Dirac-like dispersion extending one-dimensionally in k space - the Dirac-node arc - near the bulk node at the zone diagonal. These novel Dirac states reside on the surface and could be related to hybridizations of bulk states, but currently we have no explanation for its origin. This discovery poses an intriguing challenge to the theoretical understanding of topological line-node semimetals.Comment: 5 pages, 4 figures (paper proper) + 2 pages, figures (supplemental material

    Finite temperature Drude weight of the one dimensional spin 1/2 Heisenberg model}

    Full text link
    Using the Bethe ansatz method, the zero frequency contribution (Drude weight) to the spin current correlations is analyzed for the easy plane antiferromagnetic Heisenberg model. The Drude weight is a monotonically decreasing function of temperature for all 0<Delta< 1, it approaches the zero temperature value with a power law and it appears to vanish for all finite temperatures at the isotropic Delta=1 point.Comment: 5 pages, 2 Postscript figure

    Thermodynamics of the (1,1/2) Ferrimagnet in Finite Magnetic Fields

    Full text link
    We investigate the specific heat and magnetisation of a ferrimagnet with gS=1 and S=1/2 spins in a finite magnetic field using the transfer matrix DMRG down to T=0.025J. Ferromagnetic gapless and antiferromagnetic gapped excitations for H=0 lead to rich thermodynamics for H > 0. While the specific heat is characterized by a generic double peak structure, magnetisation reveals two critical fields, Hc1=1.76(1) and Hc2=3.00(1) with square-root behaviour in the T=0 magnetisation. Simple analytical arguments allow to understand these experimentally accessible findings.Comment: 5 pages, 7 eps figures, uses RevTeX, submitted to PR

    Spin Waves in Random Spin Chains

    Full text link
    We study quantum spin-1/2 Heisenberg ferromagnetic chains with dilute, random antiferromagnetic impurity bonds with modified spin-wave theory. By describing thermal excitations in the language of spin waves, we successfully observe a low-temperature Curie susceptibility due to formation of large spin clusters first predicted by the real-space renormalization-group approach, as well as a crossover to a pure ferromagnetic spin chain behavior at intermediate and high temperatures. We compare our results of the modified spin-wave theory to quantum Monte Carlo simulations.Comment: 3 pages, 3 eps figures, submitted to the 47th Conference on Magnetism and Magnetic Material

    Non-dissipative thermal transport in the massive regimes of the XXZ chain

    Full text link
    We present exact results on the thermal conductivity of the one-dimensional spin-1/2 XXZ model in the massive antiferromagnetic and ferromagnetic regimes. The thermal Drude weight is calculated by a lattice path integral formulation. Numerical results for wide ranges of temperature and anisotropy as well as analytical results in the low and high temperature limits are presented. At finite temperature, the thermal Drude weight is finite and hence there is non-dissipative thermal transport even in the massive regime. At low temperature, the thermal Drude weight behaves as D(T)exp(δ/T)/TD(T)\sim \exp(-\delta/T)/\sqrt{T} where δ\delta is the one-spinon (respectively one-magnon) excitation energy for the antiferromagnetic (respectively ferromagnetic) regime.Comment: 16 page

    A theoretical investigation of ferromagnetic tunnel junctions with 4-valued conductances

    Full text link
    In considering a novel function in ferromagnetic tunnel junctions consisting of ferromagnet(FM)/barrier/FM junctions, we theoretically investigate multiple valued (or multi-level) cell property, which is in principle realized by sensing conductances of four states recorded with magnetization configurations of two FMs; that is, (up,up), (up,down), (down,up), (down,down). To obtain such 4-valued conductances, we propose FM1/spin-polarized barrier/FM2 junctions, where the FM1 and FM2 are different ferromagnets, and the barrier has spin dependence. The proposed idea is applied to the case of the barrier having localized spins. Assuming that all the localized spins are pinned parallel to magnetization axes of the FM1 and FM2, 4-valued conductances are explicitly obtained for the case of many localized spins. Furthermore, objectives for an ideal spin-polarized barrier are discussed.Comment: 9 pages, 3 figures, accepted for publication in J. Phys.: Condens. Matte
    corecore