14 research outputs found
The Presence of Essential and Non-Essential Stratum Corneum Proteases: The Vital Need for Protease Inhibitors
Dry skin is one of the most important
concerns of consumers worldwide.
Despite huge efforts over several decades,
the personal care industry still
does not offer complete solutions that
satisfy the unmet needs of consumers
for moisturizing treatments. The
paucity of data for the underlying biochemical
problems in and the effects
of moisturizers on facial skin biology
and physiology may partly explain
this. Our recent color mapping studies
based on bio-instrumental evaluations
of skin capacitance and transepidermal
water loss have revealed the
complexity of facial skin. However,
the biomolecular reasons for these
subtle differences in the different
zones of the face are unknown so
far. As the maturation of the stratum
corneum is vital for skin moisturization
and optimal barrier function, we
believe that the protease / proteaseinhibitor
balance particularly of the
plasminogen system may be key in
these processes. Thus, our aim was
to develop a specific dual plasmin and
urokinase inhibitor for topical application
to barrier-impaired skin and
demonstrate its efficac
T2K neutrino flux prediction
cited By 15 art_number: 012001 affiliation: Centre for Particle Physics, Department of Physics, University of Alberta, Edmonton, AB, Canada; Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Bern, Switzerland; Department of Physics, Boston University, Boston, MA, United States; Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States; IRFU, CEA Saclay, Gif-sur-Yvette, France; Institute for Universe and Elementary Particles, Chonnam National University, Gwangju, South Korea; Department of Physics, University of Colorado at Boulder, Boulder, CO, United States; Department of Physics, Colorado State University, Fort Collins, CO, United States; Department of Physics, Dongshin University, Naju, South Korea; Department of Physics, Duke University, Durham, NC, United States; IN2P3-CNRS, Laboratoire Leprince-Ringuet, Ecole Polytechnique, Palaiseau, France; Institute for Particle Physics, ETH Zurich, Zurich, Switzerland; Section de Physique, DPNC, University of Geneva, Geneva, Switzerland; H. Niewodniczanski Institute of Nuclear Physics PAN, Cracow, Poland; High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan; Institut de Fisica d’Altes Energies (IFAE), Bellaterra (Barcelona), Spain; IFIC (CSIC and University of Valencia), Valencia, Spain; Department of Physics, Imperial College London, London, United Kingdom; INFN Sezione di Bari, Dipartimento Interuniversitario di Fisica, Università e Politecnico di Bari, Bari, Italy; INFN Sezione di Napoli and Dipartimento di Fisica, Università di Napoli, Napoli, Italy; INFN Sezione di Padova, Dipartimento di Fisica, Università di Padova, Padova, Italy; INFN Sezione di Roma, Università di Roma la Sapienza, Roma, Italy; Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russian Federation; Kobe University, Kobe, Japan; Department of Physics, Kyoto University, Kyoto, Japan; Physics Department, Lancaster University, Lancaster, United Kingdom; Department of Physics, University of Liverpool, Liverpool, United Kingdom; Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, United States; Université de Lyon, Université Claude Bernard Lyon 1, IPN Lyon (IN2P3), Villeurbanne, France; Department of Physics, Miyagi University of Education, Sendai, Japan; National Centre for Nuclear Research, Warsaw, Poland; State University of New York at Stony Brook, Stony Brook, NY, United States; Department of Physics and Astronomy, Osaka City University, Department of Physics, Osaka, Japan; Department of Physics, Oxford University, Oxford, United Kingdom; UPMC, Université Paris Diderot, Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Paris, France; Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States; School of Physics, Queen Mary University of London, London, United Kingdom; Department of Physics, University of Regina, Regina, SK, Canada; Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States; III. Physikalisches Institut, RWTH Aachen University, Aachen, Germany; Department of Physics and Astronomy, Seoul National University, Seoul, South Korea; Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom; University of Silesia, Institute of Physics, Katowice, Poland; STFC, Rutherford Appleton Laboratory, Harwell Oxford, Warrington, United Kingdom; Department of Physics, University of Tokyo, Tokyo, Japan; Institute for Cosmic Ray Research, Kamioka Observatory, University of Tokyo, Kamioka, Japan; Institute for Cosmic Ray Research, Research Center for Cosmic Neutrinos, University of Tokyo, Kashiwa, Japan; Department of Physics, University of Toronto, Toronto, ON, Canada; TRIUMF, Vancouver, BC, Canada; Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada; Faculty of Physics, University of Warsaw, Warsaw, Poland; Institute of Radioelectronics, Warsaw University of Technology, Warsaw, Poland; Department of Physics, University of Warwick, Coventry, United Kingdom; Department of Physics, University of Washington, Seattle, WA, United States; Department of Physics, University of Winnipeg, Winnipeg, MB, Canada; Faculty of Physics and Astronomy, Wroclaw University, Wroclaw, Poland; Department of Physics and Astronomy, York University, Toronto, ON, Canada references: Astier, P., (2003) Nucl. Instrum. Methods Phys. Res., Sect. A, 515, p. 800. , (NOMAD Collaboration), NIMAER 0168-9002 10.1016/j.nima.2003.07.054; Ahn, M., (2006) Phys. Rev. D, 74, p. 072003. , (K2K Collaboration), PRVDAQ 1550-7998 10.1103/PhysRevD.74.072003; Adamson, P., (2008) Phys. Rev. D, 77, p. 072002. , (MINOS Collaboration), PRVDAQ 1550-7998 10.1103/PhysRevD.77.072002; Aguilar-Arevalo, A., (2009) Phys. Rev. D, 79, p. 072002. , (MiniBooNE Collaboration), PRVDAQ 1550-7998 10.1103/PhysRevD.79.072002; (2003) Letter of Intent: Neutrino Oscillation Experiment at JHF, , http://neutrino.kek.jp/jhfnu/loi/loi_JHFcor.pdf, T2K Collaboration; Abe, K., (2011) Nucl. Instrum. Methods Phys. Res., Sect. A, 659, p. 106. , (T2K Collaboration), NIMAER 0168-9002 10.1016/j.nima.2011.06.067; Abe, K., (2011) Phys. Rev. Lett., 107, p. 041801. , (T2K Collaboration), PRLTAO 0031-9007 10.1103/PhysRevLett.107.041801; Abe, K., (2012) Phys. Rev. D, 85, p. 031103. , (T2K Collaboration), PRVDAQ 1550-7998 10.1103/PhysRevD.85.031103; Fukuda, Y., (2003) Nucl. Instrum. Methods Phys. Res., Sect. A, 501, p. 418. , NIMAER 0168-9002 10.1016/S0168-9002(03)00425-X; Beavis, D., Carroll, A., Chiang, I., (1995), Physics Design Report, BNL 52459Abgrall, N., (2011) Phys. Rev. C, 84, p. 034604. , (NA61/SHINE Collaboration), PRVCAN 0556-2813 10.1103/PhysRevC.84.034604; Abgrall, N., (2012) Phys. Rev. C, 85, p. 035210. , (NA61/SHINE Collaboration), PRVCAN 0556-2813 10.1103/PhysRevC.85.035210; Bhadra, S., (2013) Nucl. Instrum. Methods Phys. Res., Sect. A, 703, p. 45. , NIMAER 0168-9002 10.1016/j.nima.2012.11.044; Van Der Meer, S., Report No. CERN-61-07Palmer, R., Report No. CERN-65-32, 141Ichikawa, A., (2012) Nucl. Instrum. Methods Phys. Res., Sect. A, 690, p. 27. , NIMAER 0168-9002 10.1016/j.nima.2012.06.045; Matsuoka, K., (2010) Nucl. Instrum. Methods Phys. Res., Sect. A, 624, p. 591. , NIMAER 0168-9002 10.1016/j.nima.2010.09.074; Abe, K., (2012) Nucl. Instrum. Methods Phys. Res., Sect. A, 694, p. 211. , (T2K Collaboration), NIMAER 0168-9002 10.1016/j.nima.2012.03.023; Abgrall, N., (2011) Nucl. Instrum. Methods Phys. Res., Sect. A, 637, p. 25. , (T2K ND280 TPC Collaboration), NIMAER 0168-9002 10.1016/j.nima.2011.02. 036; Amaudruz, P.-A., (2012) Nucl. Instrum. Methods Phys. Res., Sect. A, 696, p. 1. , (T2K ND280 FGD Collaboration), NIMAER 0168-9002 10.1016/j.nima.2012.08. 020; Battistoni, G., Cerutti, F., Fasso, A., Ferrari, A., Muraro, S., Ranft, J., Roesler, S., Sala, P.R., (2007) AIP Conf. Proc., 896, p. 31. , APCPCS 0094-243X 10.1063/1.2720455; A. Ferrari, P. R. Sala, A. Fasso, and J. Ranft, Report No. CERN-2005-010A. Ferrari P. R. Sala A. Fasso J. Ranft Report No. SLAC-R-773A. Ferrari P. R. Sala A. Fasso J. Ranft Report No. INFN-TC-05-11R. Brun, F. Carminati, and S. Giani, Report No. CERN-W5013Zeitnitz, C., Gabriel, T.A., (1993) Proceedings of International Conference on Calorimetry in High Energy Physics, , in Elsevier Science B.V., Tallahassee, FL; Fasso, A., Ferrari, A., Ranft, J., Sala, P.R., Proceedings of the International Conference on Calorimetry in High Energy Physics, 1994, , in; Beringer, J., (2012) Phys. Rev. D, 86, p. 010001. , (Particle Data Group), PRVDAQ 1550-7998 10.1103/PhysRevD.86.010001; Eichten, T., (1972) Nucl. Phys. B, 44, p. 333. , NUPBBO 0550-3213 10.1016/0550-3213(72)90120-4; Allaby, J.V., Tech. Rep. 70-12 (CERN, 1970)Chemakin, I., (2008) Phys. Rev. C, 77, p. 015209. , PRVCAN 0556-2813 10.1103/PhysRevC.77.015209; Abrams, R.J., Cool, R., Giacomelli, G., Kycia, T., Leontic, B., Li, K., Michael, D., (1970) Phys. Rev. D, 1, p. 1917. , PRVDAQ 0556-2821 10.1103/PhysRevD.1.1917; Allaby, J.V., (1970) Yad. Fiz., 12, p. 538. , IDFZA7 0044-0027; Allaby, J.V., (1969) Phys. Lett. B, 30, p. 500. , PYLBAJ 0370-2693 10.1016/0370-2693(69)90184-1; Allardyce, B.W., (1973) Nucl. Phys. A, 209, p. 1. , NUPABL 0375-9474 10.1016/0375-9474(73)90049-3; Bellettini, G., Cocconi, G., Diddens, A.N., Lillethun, E., Matthiae, G., Scanlon, J.P., Wetherell, A.M., (1966) Nucl. Phys., 79, p. 609. , NUPHA7 0029-5582 10.1016/0029-5582(66)90267-7; Bobchenko, B.M., (1979) Sov. J. Nucl. Phys., 30, p. 805. , SJNCAS 0038-5506; Carroll, A.S., (1979) Phys. Lett. B, 80, p. 319. , PYLBAJ 0370-2693 10.1016/0370-2693(79)90226-0; Cronin, J.W., Cool, R., Abashian, A., (1957) Phys. Rev., 107, p. 1121. , PHRVAO 0031-899X 10.1103/PhysRev.107.1121; Chen, F.F., Leavitt, C., Shapiro, A., (1955) Phys. Rev., 99, p. 857. , PHRVAO 0031-899X 10.1103/PhysRev.99.857; Denisov, S.P., Donskov, S.V., Gorin, Yu.P., Krasnokutsky, R.N., Petrukhin, A.I., Prokoshkin, Yu.D., Stoyanova, D.A., (1973) Nucl. Phys. B, 61, p. 62. , NUPBBO 0550-3213 10.1016/0550-3213(73)90351-9; Longo, M.J., Moyer, B.J., (1962) Phys. Rev., 125, p. 701. , PHRVAO 0031-899X 10.1103/PhysRev.125.701; Vlasov, A.V., (1978) Sov. J. Nucl. Phys., 27, p. 222. , SJNCAS 0038-5506; Feynman, R., (1969) Phys. Rev. Lett., 23, p. 1415. , PRLTAO 0031-9007 10.1103/PhysRevLett.23.1415; Bonesini, M., Marchionni, A., Pietropaolo, F., Tabarelli De Fatis, T., (2001) Eur. Phys. J. C, 20, p. 13. , EPCFFB 1434-6044 10.1007/s100520100656; Barton, D.S., (1983) Phys. Rev. D, 27, p. 2580. , PRVDAQ 0556-2821 10.1103/PhysRevD.27.2580; Skubic, P., (1978) Phys. Rev. D, 18, p. 3115. , PRVDAQ 0556-2821 10.1103/PhysRevD.18.3115; Feynman, R.P., (1972) Photon-Hadron Interactions, , Benjamin, New York; Bjorken, J.D., Paschos, E.A., (1969) Phys. Rev., 185, p. 1975. , PHRVAO 0031-899X 10.1103/PhysRev.185.1975; Taylor, F.E., Carey, D., Johnson, J., Kammerud, R., Ritchie, D., Roberts, A., Sauer, J., Walker, J., (1976) Phys. Rev. D, 14, p. 1217. , PRVDAQ 0556-2821 10.1103/PhysRevD.14.1217; Abgrall, N., (2013) Nucl. Instrum. Methods Phys. Res., Sect. A, 701, p. 99. , NIMAER 0168-9002 10.1016/j.nima.2012.10.079; Hayato, Y., (2002) Nucl. Phys. B, Proc. Suppl., 112, p. 171. , NPBSE7 0920-5632 10.1016/S0920-5632(02)01759-0 correspondence_address1: Abe, K.; Institute for Cosmic Ray Research, Kamioka Observatory, University of Tokyo, Kamioka, Japan coden: PRVDA abbrev_source_title: Phys Rev D Part Fields Gravit Cosmol document_type: Article source: Scopu
Pharmaceutical And Biomedical Applications Of Affinity Chromatography: Recent Trends And Developments
Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically-related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered
Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions
BACKGROUND: Human papillomavirus types 16 (HPV-16) and 18 (HPV-18) cause approximately 70% of cervical cancers worldwide. A phase 3 trial was conducted to evaluate a quadrivalent vaccine against HPV types 6, 11, 16, and 18 (HPV-6/11/16/18) for the prevention of high-grade cervical lesions associated with HPV-16 and HPV-18. METHODS: In this randomized, double-blind trial, we assigned 12,167 women between the ages of 15 and 26 years to receive three doses of either HPV-6/11/16/18 vaccine or placebo, administered at day 1, month 2, and month 6. The primary analysis was performed for a per-protocol susceptible population that included 5305 women in the vaccine group and 5260 in the placebo group who had no virologic evidence of infection with HPV-16 or HPV-18 through 1 month after the third dose (month 7). The primary composite end point was cervical intraepithelial neoplasia grade 2 or 3, adenocarcinoma in situ, or cervical cancer related to HPV-16 or HPV-18. RESULTS: Subjects were followed for an average of 3 years after receiving the first dose of vaccine or placebo. Vaccine efficacy for the prevention of the primary composite end point was 98% (95.89% confidence interval [CI], 86 to 100) in the per-protocol susceptible population and 44% (95% CI, 26 to 58) in an intention-to-treat population of all women who had undergone randomization (those with or without previous infection). The estimated vaccine efficacy against all high-grade cervical lesions, regardless of causal HPV type, in this intention-to-treat population was 17% (95% CI, 1 to 31). CONCLUSIONS: In young women who had not been previously infected with HPV-16 or HPV-18, those in the vaccine group had a significantly lower occurrence of high-grade cervical intraepithelial neoplasia related to HPV-16 or HPV-18 than did those in the placebo group