3,840 research outputs found
Why Tie A Product Consumers Do Not Use?
This paper provides a new explanation for tying that is not based on any of the standard explanations -- efficiency, price discrimination, and exclusion. Our analysis shows how a monopolist sometimes has an incentive to tie a complementary good to its monopolized good in order to transfer profits from a rival producer of the complementary product to the monopolist. This occurs even when consumers -- who have the option to use the monopolist's complementary good -- do not use it. The tie is profitable because it alters the subsequent pricing game between the monopolist and the rival in a manner favorable to the monopolist. We show that this form of tying is socially inefficient, but interestingly can arise only when the tie is socially efficient in the absence of the rival producer. We relate this inefficient form of tying to several actual examples and explore its antitrust implications.
CEO Transformational Leadership and Corporate Social Responsibility
The overall purpose of this study is to apply transformational leadership theory to improve our understanding of the potential role of CEOs in determining the extent to which their firms engage in corporate social responsibility (CSR). We generate a theoretical argument for the existence of relationships between aspects of transformational leadership and CSR, which we test using data from 56 U.S. and Canadian firms. CEO intellectual stimulation (but not CEO charismatic leadership) is found to be positively associated with the propensity of the firm to engage in "strategic" CSR, or those CSR activities that are most likely to be related to the firm's corporate and business-level strategies. Thus, studies that ignore the role of leadership in CSR may generate imprecise conclusions regarding the antecedents and consequences of these activities. We conclude that there is a need for additional multidisciplinary research bridging micro- and macro-level conceptualizations of the role of leadership in CSR.
Agame-theoretical approach to network capacity planning under competition
The paper discusses the dimensioning strategies of two network providers (operators) that supply channels to the same population of users in a competitive environment. Usersare assumed to compete for best service (lowest blocking probability of new request), while operators wishto maximize their profits. This setting gives rise to two interconnected, noncooperative games: a) a users game, in which the partition of primary traffic between operators is determined by the operators' channel capacities and by the users' blocking-avoidance strategy; and b) a network dimensioning game between operators in which the players alternate dimensioning decisions thatmaximize their profit rate under the current channel capacity of his/her opponent. At least for two plausible users' blocking avoidance strategies discussed in the paper, the users game will always reach some algorithmic equilibrium. In the operators' game, the player strategies are given by their numbers of deployed chanels, limited by their available infrastructure resources. If the infrastrucutre is under-dimensioned with respect to the traffic rate, the operators game willreach a Nash equilibrium when both players reach full use of their available infrastructures. Otherweise, a Nash equilibrium may also arise if both operators incur the same deployment costs. If costs are asymmetric, though, the alternating game may enter a loop. If the asymmetry is modest, both players may then try to achieve a competitive monopoly in which the opponent is forced to leave the game or operate with a loss (negative profit). However, if the asymmetry is high enough, only the player with the lower costs can force his opponent to leave the game while still holding a profitable operation. --network dimensioning,game theory,duopoly,Nash equilibrium,circuit switching,blocking probability
Analytic lymph node number establishes staging accuracy by occult tumor burden in colorectal cancer.
BACKGROUND AND OBJECTIVES: Recurrence in lymph node-negative (pN0) colorectal cancer suggests the presence of undetected occult metastases. Occult tumor burden in nodes estimated by GUCY2C RT-qPCR predicts risk of disease recurrence. This study explored the impact of the number of nodes analyzed by RT-qPCR (analytic) on the prognostic utility of occult tumor burden.
METHODS: Lymph nodes (range: 2-159) from 282 prospectively enrolled pN0 colorectal cancer patients, followed for a median of 24 months (range: 2-63), were analyzed by GUCY2C RT-qPCR. Prognostic risk categorization defined using occult tumor burden was the primary outcome measure. Association of prognostic variables and risk category were defined by multivariable polytomous and semi-parametric polytomous logistic regression.
RESULTS: Occult tumor burden stratified this pN0 cohort into categories of low (60%; recurrence rate (RR) = 2.3% [95% CI 0.1-4.5%]), intermediate (31%; RR = 33.3% [23.7-44.1%]), and high (9%; RR = 68.0% [46.5-85.1%], P \u3c 0.001) risk of recurrence. Beyond race and T stage, the number of analytic nodes was an independent marker of risk category (P \u3c 0.001). When \u3e12 nodes were analyzed, occult tumor burden almost completely resolved prognostic risk classification of pN0 patients.
CONCLUSIONS: The prognostic utility of occult tumor burden assessed by GUCY2C RT-qPCR is dependent on the number of analytic lymph nodes
Recommended from our members
Predicting pilot error on the flight deck: Validation of a new methodology and a multiple methods and analysts approach to enhancing error prediction sensitivity
The Human Error Template (HET) is a recently developed methodology for predicting designed induced pilot error. This article describes a validation study undertaken to compare the performance of HET against three contemporary Human Error Identification (HEI) approaches when used to predict pilot errors for an approach and landing task and also to compare individual analyst error predictions to an approach to enhancing error prediction sensitivity: the multiple analysts and methods approach, whereby multiple analyst predictions using a range of HEI technique are pooled. The findings indicate that, of the four methodologies used in isolation, analysts using the HET methodology offered the most accurate error predictions, and also that the multiple analysts and methods approach was more successful overall in terms of error prediction sensitivity than the three other methods but not the HET approach. The results suggest that when predicting design induced error, it is appropriate to use domain specific approaches and also a toolkit of different HEI approaches and multiple analysts in order to heighten error prediction sensitivity
Optimal Alignment Sensing of a Readout Mode Cleaner Cavity
Critically coupled resonant optical cavities are often used as mode cleaners
in optical systems to improve the signal to noise ratio (SNR) of a signal that
is encoded as an amplitude modulation of a laser beam. Achieving the best SNR
requires maintaining the alignment of the mode cleaner relative to the laser
beam on which the signal is encoded. An automatic alignment system which is
primarily sensitive to the carrier field component of the beam will not, in
general, provide optimal SNR. We present an approach that modifies traditional
dither alignment sensing by applying a large amplitude modulation on the signal
field, thereby producing error signals that are sensitive to the signal
sideband field alignment. When used in conjunction with alignment actuators,
this approach can improve the detected SNR; we demonstrate a factor of 3
improvement in the SNR of a kilometer-scale detector of the Laser
Interferometer Gravitational-wave Observatory. This approach can be generalized
to other types of alignment sensors
Tidal resource and interactions between multiple channels in the Goto Islands, Japan
The Goto Islands in Nagasaki Prefecture, Japan, contain three parallel channels that are suitable for tidal energy development and are the planned location for a tidal energy test centre. Energy extraction is added to a 3D numerical hydrodynamic model of the region, using a sub-grid momentum sink approach, to predict the effects of tidal development. The available resource with first-generation turbines is estimated at 50-107MW peak output. Spreading turbine thrust across the whole cross-section to prevent bypass flow results in a 64% increase in peak power in one channel, highlighting the importance of 3D over 2D modelling. The energy available for extraction in each strait appears to be independent of the level of extraction in other straits. This contrasts with theoretical and numerical studies of other multi-channel systems. The weak interactions found in this study can be traced to the hydraulic effects of energy extraction not extending to neighbouring channels due to their geometry
Agame-theoretical approach to network capacity planning under competition
The paper discusses the dimensioning strategies of two network providers (operators) that supply channels to the same population of users in a competitive environment. Usersare assumed to compete for best service (lowest blocking probability of new request), while operators wishto maximize their profits. This setting gives rise to two interconnected, noncooperative games: a) a users game, in which the partition of primary traffic between operators is determined by the operators' channel capacities and by the users' blocking-avoidance strategy; and b) a network dimensioning game between operators in which the players alternate dimensioning decisions thatmaximize their profit rate under the current channel capacity of his/her opponent. At least for two plausible users' blocking avoidance strategies discussed in the paper, the users game will always reach some algorithmic equilibrium. In the operators' game, the player strategies are given by their numbers of deployed chanels, limited by their available infrastructure resources. If the infrastrucutre is under-dimensioned with respect to the traffic rate, the operators game willreach a Nash equilibrium when both players reach full use of their available infrastructures. Otherweise, a Nash equilibrium may also arise if both operators incur the same deployment costs. If costs are asymmetric, though, the alternating game may enter a loop. If the asymmetry is modest, both players may then try to achieve a competitive monopoly in which the opponent is forced to leave the game or operate with a loss (negative profit). However, if the asymmetry is high enough, only the player with the lower costs can force his opponent to leave the game while still holding a profitable operation
- …