2 research outputs found
Characterization of one-dimensional quantum channels in InAs/AlSb
We report the magnetoresistance characteristics of one-dimensional electrons
confined in a single InAs quantum well sandwiched between AlSb barriers. As a
result of a novel nanofabrication scheme that utilizes a 3nm-shallow wet
chemical etching to define the electrostatic lateral confinement, the system is
found to possess three important properties: specular boundary scattering, a
strong lateral confinement potential, and a conducting channel width that is
approximately the lithography width. Ballistic transport phenomena, including
the quenching of the Hall resistance, the last Hall plateau, and a strong
negative bend resistance, are observed at 4K in cross junctions with sharp
corners. In a ring geometry, we have observed Aharonov-Bohm interference that
exhibits characteristics different from those of the GaAs counterpart due to
the ballistic nature of electron transport and the narrowness of the conducting
channel width.Comment: pdf-file, 8 figures, to be published in Phys. Rev.