803 research outputs found
Autophagy in Inflammatory Diseases
Autophagy provides a mechanism for the turnover of cellular organelles and proteins through a lysosome-dependent degradation pathway. During starvation, autophagy exerts a homeostatic function that promotes cell survival by recycling metabolic precursors. Additionally, autophagy can interact with other vital processes such as programmed cell death, inflammation, and adaptive immune mechanisms, and thereby potentially influence disease pathogenesis. Macrophages deficient in autophagic proteins display enhanced caspase-1-dependent proinflammatory cytokine production and the activation of the inflammasome. Autophagy provides a functional role in infectious diseases and sepsis by promoting intracellular bacterial clearance. Mutations in autophagy-related genes, leading to loss of autophagic function, have been implicated in the pathogenesis of Crohn's disease. Furthermore, autophagy-dependent mechanisms have been proposed in the pathogenesis of several pulmonary diseases that involve inflammation, including cystic fibrosis and pulmonary hypertension. Strategies aimed at modulating autophagy may lead to therapeutic interventions for diseases associated with inflammation
Therapeutic Potential of Heme Oxygenase-1/Carbon Monoxide in Lung Disease
Heme oxygenase (HO), a catabolic enzyme, provides the rate-limiting step in the oxidative breakdown of heme, to generate carbon monoxide (CO), iron, and biliverdin-IXα. Induction of the inducible form, HO-1, in tissues is generally regarded as a protective mechanism. Over the last decade, considerable progress has been made in defining the therapeutic potential of HO-1 in a number of preclinical models of lung tissue injury and disease. Likewise, tissue-protective effects of CO, when applied at low concentration, have been observed in many of these models. Recent studies have expanded this concept to include chemical CO-releasing molecules (CORMs). Collectively, salutary effects of the HO-1/CO system have been demonstrated in lung inflammation/acute lung injury, lung and vascular transplantation, sepsis, and pulmonary hypertension models. The beneficial effects of HO-1/CO are conveyed in part through the inhibition or modulation of inflammatory, apoptotic, and proliferative processes. Recent advances, however, suggest that the regulation of autophagy and the preservation of mitochondrial homeostasis may serve as additional candidate mechanisms. Further preclinical and clinical trials are needed to ascertain the therapeutic potential of HO-1/CO in human clinical disease
Review Article Autophagy in Inflammatory Diseases
Autophagy provides a mechanism for the turnover of cellular organelles and proteins through a lysosome-dependent degradation pathway. During starvation, autophagy exerts a homeostatic function that promotes cell survival by recycling metabolic precursors. Additionally, autophagy can interact with other vital processes such as programmed cell death, inflammation, and adaptive immune mechanisms, and thereby potentially influence disease pathogenesis. Macrophages deficient in autophagic proteins display enhanced caspase-1-dependent proinflammatory cytokine production and the activation of the inflammasome. Autophagy provides a functional role in infectious diseases and sepsis by promoting intracellular bacterial clearance. Mutations in autophagy-related genes, leading to loss of autophagic function, have been implicated in the pathogenesis of Crohn's disease. Furthermore, autophagy-dependent mechanisms have been proposed in the pathogenesis of several pulmonary diseases that involve inflammation, including cystic fibrosis and pulmonary hypertension. Strategies aimed at modulating autophagy may lead to therapeutic interventions for diseases associated with inflammation
I-mode studies at ASDEX Upgrade: L-I and I-H transitions, pedestal and confinement properties
The I-mode is a plasma regime obtained when the usual L-H power threshold is high, e.g.
with unfavourable ion
B
∇
direction. It is characterised by the development of a temperature
pedestal while the density remains roughly as in the L-mode. This leads to a confinement
improvement above the L-mode level which can sometimes reach H-mode values. This
regime, already obtained in the ASDEX Upgrade tokamak about two decades ago, has
been studied again since 2009 taking advantage of the development of new diagnostics
and heating possibilities. The I-mode in ASDEX Upgrade has been achieved with different
heating methods such as NBI, ECRH and ICRF. The I-mode properties, power threshold,
pedestal characteristics and confinement, are independent of the heating method. The power
required at the L-I transition exhibits an offset linear density dependence but, in contrast
to the L-H threshold, depends weakly on the magnetic field. The L-I transition seems to be
mainly determined by the edge pressure gradient and the comparison between ECRH and
NBI induced L-I transitions suggests that the ion channel plays a key role. The I-mode often
evolves gradually over a few confinement times until the transition to H-mode which offers
a very interesting situation to study the transport reduction and its link with the pedestal
formation. Exploratory discharges in which
n
=
2 magnetic perturbations have been applied
indicate that these can lead to an increase of the I-mode power threshold by flattening the edge
pressure at fixed heating input power: more heating power is necessary to restore the required
edge pressure gradient. Finally, the confinement properties of the I-mode are discussed in
detail.European Commission (EUROfusion 633053
Crystal structure of mixed fluorites Ca(1-x)Sr(x)F(2) and Sr(1-x)Ba(x)F(2) and luminescence of Eu(2+) in the crystals
Within the framework of the virtual crystal method implemented in the shell
model and pair potential approximation the crystal structure of mixed fluorites
Ca(1-x)Sr(x)F(2) and Sr(1-x)Ba(x)F(2) has been calculated. The impurity center
Eu(2+) and the distance Eu(2+)-F in this crystals have been also calculated.
The low level position of excited 4f65d configuration of the Eu(2+) ion has
been expressed using phenomenological dependence on distance E(2+)-F. The
dependences of Stokes shift and Huang-Rhys factor on concentration x have been
received for yellow luminescence in Sr(1-x)Ba(x)F(2):Eu(2+). The value x, for
which the eg -level of Eu(2+) ion will be in conduction band in
Sr(1-x)Ba(x)F(2):Eu(2+) has been calculated.Comment: 8 pages, 3 figures. The manuscript is sent to journal 'Physics of the
solid state'. The results will be submitted on inernational conference
SCINTMAT'2002 in oral session (june,20-22,2002,Ekaterinburg,Russia).
Corresponding author e-mail: [email protected]
What can we learn from a race with one runner? A comment on Foreman-Peck and Zhou, ‘Late marriage as a contributor to the industrial revolution in England’
Foreman-Peck and Zhou’s claim that late marriage was a major contributor to the Industrial Revolution in England cannot be sustained. They consider neither other influences on English industrialisation nor other European economies where marriage age was high throughout the early modern period but industrialisation came much later. It is not possible to argue that late marriage age was a major contributor to English industrialisation without analysing other possible contributing factors. Any consideration of this question must assess marriage age alongside other causes of industrialisation and explain why other European economies with higher marriage age industrialised much later than England
- …