37,477 research outputs found
Control of lasing in fully chaotic open microcavities by tailoring the shape factor
We demonstrate experimentally that lasing in a semiconductor microstadium can
be optimized by controlling its shape. Under spatially uniform optical pumping,
the first lasing mode in a GaAs microstadium with large major-to-minor-axis
ratio usually corresponds to a high-quality scar mode consisting of several
unstable periodic orbits. Interference of waves propagating along the
constituent orbits may minimize light leakage at particular major-to-minor-axis
ratio. By making stadium of the optimum shape, we are able to maximize the mode
quality factor and align the mode frequency to the peak of the gain spectrum,
thus minimizing the lasing threshold. This work opens the door to control
chaotic microcavity lasers by tailoring the shape factor
The Consistent Result of Cosmological Constant From Quantum Cosmology and Inflation with Born-Infeld Scalar Field
The Quantum cosmology with Born-Infeld(B-I) type scalar field is considered.
In the extreme limits of small cosmological scale factor the wave function of
the universe can also be obtained by applying the methods developed by
Hartle-Hawking(H-H) and Vilenkin. H-H wave function predicts that most Probable
cosmological constant equals to (
equals to the maximum of the kinetic energy of scalar field). It is different
from the original results() in cosmological constant obtained by
Hartle-Hawking. The Vilenkin wave function predicts a nucleating unverse with
largest possible cosmological constant and it is larger than . The
conclusions have been nicely to reconcile with cosmic inflation. We investigate
the inflation model with B-I type scalar field, and find that depends on
the amplitude of tensor perturbation , with the form
The vacuum energy in inflation epoch depends on the
tensor-to-scalar ratio . The amplitude of the
tensor perturbation can, in principle, be large enough to be
discovered. However, it is only on the border of detectability in future
experiments. If it has been observed in future, this is very interesting to
determine the vacuum energy in inflation epoch.Comment: 12 pages, one figure, references added, accepted by European Physical
Journal
A Differential X-Ray Gunn-Peterson Test Using a Giant Cluster Filament
Using CCD detectors onboard the forthcoming X-ray observatories Chandra and
XMM, it is possible to devise a measurement of the absolute density of heavy
elements in the hypothetical warm gas filling intercluster space. This gas may
be the largest reservoir of baryonic matter in the Universe, but even its
existence has not been proven observationally at low redshifts. The proposed
measurement would make use of a unique filament of galaxy clusters spanning
over 700 Mpc (0.1<z<0.2) along the line of sight in a small area of the sky in
Aquarius. The surface density of Abell clusters there is more than 6 times the
sky average. It is likely that the intercluster matter column density is
enhanced by a similar factor, making its detection feasible under certain
optimistic assumptions about its density and elemental abundances. One can
compare photoabsorption depth, mostly in the partially ionized oxygen edges, in
the spectra of clusters at different distances along the filament, looking for
a systematic increase of depth with the distance. The absorption can be
measured by the same detector and through the same Galactic column, hence the
differential test. A CCD moderate energy resolution (about 100 eV) is adequate
for detecting an absorption edge at a known redshift.Comment: Latex, 4 pages, 3 figures, uses emulateapj.sty. ApJ Letters in pres
Prospects for Higgs Searches via VBF at the LHC with the ATLAS Detector
We report on the potential for the discovery of a Standard Model Higgs boson
with the vector boson fusion mechanism in the mass range 115
with the ATLAS experiment at the LHC. Feasibility studies at hadron level
followed by a fast detector simulation have been performed for H\to
W^{(*)}W^{(*)}\to l^+l^-\sla{p_T}, and . The results obtained show a large discovery potential in the
range 115. Results obtained with multivariate techniques are
reported for a number of channels.Comment: 14 pages, 4 figures, contributed to 2003 Les Houches Workshop on
Physics at TeV Colliders. Incorporated comments from ATLAS referee
Local electronic nematicity in the one-band Hubbard model
Nematicity is a well known property of liquid crystals and has been recently
discussed in the context of strongly interacting electrons. An electronic
nematic phase has been seen by many experiments in certain strongly correlated
materials, in particular, in the pseudogap phase generic to many hole-doped
cuprate superconductors. Recent measurements in high superconductors has
shown even if the lattice is perfectly rotationally symmetric, the ground state
can still have strongly nematic local properties. Our study of the
two-dimensional Hubbard model provides strong support of the recent
experimental results on local rotational symmetry breaking. The
variational cluster approach is used here to show the possibility of an
electronic nematic state and the proximity of the underlying symmetry-breaking
ground state within the Hubbard model. We identify this nematic phase in the
overdoped region and show that the local nematicity decreases with increasing
electron filling. Our results also indicate that strong Coulomb interaction may
drive the nematic phase into a phase similar to the stripe structure. The
calculated spin (magnetic) correlation function in momentum space shows the
effects resulting from real-space nematicity
How Photoisomerization Drives Peptide Folding and Unfolding: Insights from QM/MM and MM Dynamics Simulations
Photoswitchable azobenzene cross-linkers can control the folding and unfolding of peptides by photoisomerization and can thus regulate peptide affinities and enzyme activities. Using quantum mechanics/molecular mechanics (QM/MM) methods and classical MM force fields, we report the first molecular dynamics simulations of the photoinduced folding and unfolding processes in the azobenzene cross-linked FK-11 peptide. We find that the interactions between the peptide and the azobenzene cross-linker are crucial for controlling the evolution of the secondary structure of the peptide and responsible for accelerating the folding and unfolding events. They also modify the photoisomerization mechanism of the azobenzene cross-linker compared with the situation in vacuo or in solution
- …