7,589 research outputs found
Cavity Optomagnonics
In the recent years a series of experimental and theoretical efforts have centered around a new topic: the coherent, cavity-enhanced interaction between optical photons and solid state magnons. The resulting emerging field of Cavity Optomagnonics is of interest both at a fundamental level, providing a new platform to study light-matter interaction in confined structures, as well as for its possible relevance for hybrid quantum technologies. In this chapter I introduce the basic concepts of Cavity Optomagnonics and review some theoretical developments
A follow-up study of the social adjustment of referred children after group termination
Thesis (M.S.)--Boston Universit
Design of all electric secondary power system for future advanced MALE UAV
SAvE (Systems for UAV Alternative Energy) is a research project funded in 2007 by Piemonte Regional Government, Italy, and assigned to Politecnico di Torino and Alenia Aeronautica. Aim of the project is the study of new, more efficient, more effective and more environmentally friendly on board systems for future advanced Unmanned Aerial Vehicles (UAV), particularly for future advanced MALE UAVs. The paper deals with the analysis and design of the all electric Secondary Power System of a future advanced MALE UAV, that we consider as "reference aircraft". After a thorough trade-off analysis of different configurations of the Secondary Power System, the hybrid configuration, characterized by generators (or better, starter/generators), fuel cells and traditional and innovative batteries, has been selected as the most promising. Detailed investigations to find the best way to apportion the supply of secondary power, considering the various power sources (generators or starter/generators, batteries and fuel cells) in the different modes of operations, have been performed thanks to an integrated simulation environment, where physical, functional and mission scenario simulations continuously exchange data and results
A follow-up study of the social adjustment of referred children after group termination
Thesis (M.S.)--Boston Universit
Antiferromagnetic cavity optomagnonics
Currently there is a growing interest in studying the coherent interaction between magnetic systems and electromagnetic radiation in a cavity, prompted partly by possible applications in hybrid quantum systems. We propose a multimode cavity optomagnonic system based on antiferromagnetic insulators, where optical photons couple coherently to the two homogeneous magnon modes of the antiferromagnet. These have frequencies typically in the THz range, a regime so far mostly unexplored in the realm of coherent interactions, and which makes antiferromagnets attractive for quantum transduction from THz to optical frequencies. We derive the theoretical model for the coupled system, and show that it presents unique characteristics. In particular, if the antiferromagnet presents hard-axis magnetic anisotropy, the optomagnonic coupling can be tuned by a magnetic field applied along the easy axis. This allows us to bring a selected magnon mode into and out of a dark mode, providing an alternative for a quantum memory protocol. The dynamical features of the driven system present unusual behavior due to optically induced magnon-magnon interactions, including regions of magnon heating for a red-detuned driving laser. The multimode character of the system is evident in a substructure of the optomagnonically induced transparency window
Anomalous non-ergodic scaling in adiabatic multicritical quantum quenches
We investigate non-equilibrium dynamical scaling in adiabatic quench
processes across quantum multicritical points. Our analysis shows that the
resulting power-law scaling depends sensitively on the control path, and that
anomalous critical exponents may emerge depending on the universality class. We
argue that the observed anomalous behavior originates in the fact that the
dynamical excitation process takes place asymmetrically with respect to the
static multicritical point, and that non-critical energy modes may play a
dominant role. As a consequence, dynamical scaling requires introducing new
non-static exponents.Comment: 4 pages, 4 figures, minor change in figure
Magnon-Phonon Quantum Correlation Thermometry
A large fraction of quantum science and technology requires low-temperature environments such as those afforded by dilution refrigerators. In these cryogenic environments, accurate thermometry can be difficult to implement, expensive, and often requires calibration to an external reference. Here, we theoretically propose a primary thermometer based on measurement of a hybrid system consisting of phonons coupled via a magnetostrictive interaction to magnons. Thermometry is based on a cross-correlation measurement in which the spectrum of back-action driven motion is used to scale the thermomechanical motion, providing a direct measurement of the phonon temperature independent of experimental parameters. Combined with a simple low-temperature compatible microwave cavity readout, this primary thermometer is expected to become a promising alternative for thermometry below 1 K
Asymmetric Totally-corrective Boosting for Real-time Object Detection
Real-time object detection is one of the core problems in computer vision.
The cascade boosting framework proposed by Viola and Jones has become the
standard for this problem. In this framework, the learning goal for each node
is asymmetric, which is required to achieve a high detection rate and a
moderate false positive rate. We develop new boosting algorithms to address
this asymmetric learning problem. We show that our methods explicitly optimize
asymmetric loss objectives in a totally corrective fashion. The methods are
totally corrective in the sense that the coefficients of all selected weak
classifiers are updated at each iteration. In contract, conventional boosting
like AdaBoost is stage-wise in that only the current weak classifier's
coefficient is updated. At the heart of the totally corrective boosting is the
column generation technique. Experiments on face detection show that our
methods outperform the state-of-the-art asymmetric boosting methods.Comment: 14 pages, published in Asian Conf. Computer Vision 201
Exact Results on Dynamical Decoupling by -Pulses in Quantum Information Processes
The aim of dynamical decoupling consists in the suppression of decoherence by
appropriate coherent control of a quantum register. Effectively, the
interaction with the environment is reduced. In particular, a sequence of
pulses is considered. Here we present exact results on the suppression of the
coupling of a quantum bit to its environment by optimized sequences of
pulses. The effect of various cutoffs of the spectral density of the
environment is investigated. As a result we show that the harder the cutoff is
the better an optimized pulse sequence can deal with it. For cutoffs which are
neither completely hard nor very soft we advocate iterated optimized sequences.Comment: 12 pages and 3 figure
- âŠ