650 research outputs found

    Roper excitation in p⃗+α→p⃗+α+X\vec{p}+\alpha \to \vec{p}+\alpha+X reactions

    Full text link
    We calculate differential cross sections and the spin transfer coefficient DnnD_{nn} in the p⃗+α→p⃗+α+π0\vec{p}+\alpha \to \vec{p}+\alpha+\pi^0 reaction for proton bombarding energies from 1 to 10 GeV and π0−p\pi^0 - p invariant masses spanning the region of the N∗^*(1440) Roper resonance. Two processes -- Δ\Delta excitation in the α\alpha-particle and Roper excitation in the proton -- are included in an effective reaction model which was shown previously to reproduce existing inclusive spectra. The present calculations demonstrate that these two contributions can be clearly distinguished via DnnD_{nn}, even under kinematic conditions where cross sections alone exhibit no clear peak structure due to the excitation of the Roper.Comment: 12 pages, 11 ps figures, Late

    Competition Between Gravitational and Scalar Field Radiation

    Full text link
    Recent astrophysical observations have provided strong evidence that the present expansion of the universe is accelerating, powered by the energy density associated with a cosmological term. Assuming the latter to be not simply a constant term but a "quintessence" field, we study the radiation of quanta of such a "quintessence" field ("quintons") by binary systems of different types and compare intensities to those of standard tensor gravitational wave emission. We consider both the case in which the quintessence field varies only over cosmological distances and the case in which it is modified spatially by (strong) gravitational fields, a condition that results in bounds on the gradient of the scalar field. We show that, in both the first case and, because of a bound we derive from the Hulse-Taylor pulsar, in the second, there is not sufficient quinton radiation to affect expected LISA and LIGO gravity wave signals from binary systems. We show that, in the second case, the Large Hadron Collider is capable of setting a bound similar to that from the binary pulsar.Comment: 12 pages aastex, accepted for publication in the Astrophysical Journal. Minor typographical errors and reference list correcte

    IR Kuiper Belt Constraints

    Get PDF
    We compute the temperature and IR signal of particles of radius aa and albedo α\alpha at heliocentric distance RR, taking into account the emissivity effect, and give an interpolating formula for the result. We compare with analyses of COBE DIRBE data by others (including recent detection of the cosmic IR background) for various values of heliocentric distance, RR, particle radius, aa, and particle albedo, α\alpha. We then apply these results to a recently-developed picture of the Kuiper belt as a two-sector disk with a nearby, low-density sector (40<R<50-90 AU) and a more distant sector with a higher density. We consider the case in which passage through a molecular cloud essentially cleans the Solar System of dust. We apply a simple model of dust production by comet collisions and removal by the Poynting-Robertson effect to find limits on total and dust masses in the near and far sectors as a function of time since such a passage. Finally we compare Kuiper belt IR spectra for various parameter values.Comment: 34 pages, LaTeX, uses aasms4.sty, 11 PostScript figures not embedded. A number of substantive comments by a particularly thoughtful referee have been addresse

    Plasma Energy Loss into Kaluza-Klein Modes

    Full text link
    Recently, Barger {\em et al.} computed energy losses into Kaluza Klein modes from astrophysical plasmas in the approximation of zero density for the plasmas. We extend their work by considering the effects of finite density for two plasmon processes. Our results show that, for fixed temperature, the energy loss rate per cm3^3 is constant up to some critical density and then falls exponentially. This is true for transverse and longitudinal plasmons in both the direct and crossed channels over a wide range of temperature and density. A difficulty in deriving the appropriate covariant interaction energy at finite density and temperature is addressed. We find that, for the cases considered by Barger {\em et al.}, the zero density approximation and the neglect of other plasmon processes is justified to better than an order of magnitude.Comment: 17 pages, LaTeX2e, 4 figures, 11 table

    Study of the (d->,6-Li) Reaction

    Get PDF
    This work was supported by National Science Foundation Grants PHY 76-84033A01, PHY 78-22774, and Indiana Universit

    Systematics of the K X-Ray Multiplicity for (Li,xn) Products with 180 < A < 210

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 78-22774 A02 & A03 and by Indiana Universit

    The Analyzing Power for p-p Scattering at 180 MeV

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440

    The Multiplicity of K X-Rays Emitted in (6-Li,xn) Reactions

    Get PDF
    This work was supported by National Science Foundation Grants PHY 76-84033A01, PHY 78-22774, and Indiana Universit
    • …
    corecore