7 research outputs found

    Inhibitors of Aspartate Transcarbamoylase Inhibit Mycobacterium tuberculosis Growth

    Get PDF
    Aspartate transcarbamoylase (ATCase) plays a key role in the second step of de novo pyrimidine biosynthesis in eukaryotes and has been proposed to be a target to suppress cell proliferation in E. coli, human cells and the malarial parasite. We hypothesized that a library of ATCase inhibitors developed for malarial ATCase (PfATCase) may also contain inhibitors of the tubercular ATCase and provide a similar inhibition of cellular proliferation. Of the 70 compounds screened, 10 showed single-digit micromolar inhibition in an in vitro activity assay and were tested for their effect on M. tuberculosis cell growth in culture. The most promising compound demonstrated a MIC 90 of 4 μM. A model of MtbATCase was generated using the experimental coordinates of PfATCase. In silico docking experiments showed this compound can occupy a similar allosteric pocket on MtbATCase to that seen on PfATCase, explaining the observed species selectivity seen for this compound series. </p

    Aegle marmelos Mediated Green Synthesis of Different Nanostructured Metal Hexacyanoferrates: Activity against Photodegradation of Harmful Organic Dyes

    No full text
    Prussian blue analogue potassium metal hexacyanoferrate (KMHCF) nanoparticles Fe4[Fe(CN)6]3 (FeHCF), K2Cu3[Fe(CN)6]2 (KCuHCF), K2Ni[Fe(CN)6]·3H2O (KNiHCF), and K2Co[Fe(CN)6] (KCoHCF) have been synthesized using plant based biosurfactant Aegle marmelos (Bael) and water as a green solvent. It must be emphasized here that no harmful reagent or solvent was used throughout the study. Plant extracts are easily biodegradable and therefore do not cause any harm to the environment. Hence, the proposed method of synthesis of various KMHCF nanoparticles followed a green path. The synthesized nanoparticles were characterized by powder X-ray diffraction (PXRD), Field-Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FT-IR). MHCF nanoparticles were used for the photocatalytic degradation of toxic dyes like Malachite Green (MG), Eriochrome Black T (EBT), Methyl Orange (MO), and Methylene Blue (MB). Under optimized reaction conditions, maximum photocatalytic degradation was achieved in case of KCuHCF nanoparticles mediated degradation process (MG: 96.06%, EBT: 83.03%, MB: 94.72%, and MO: 63.71%) followed by KNiHCF (MG: 95%, EBT: 80.32%, MB: 91.35%, and MO: 59.42%), KCoHCF (MG: 91.45%, EBT: 78.84%, MB: 89.28%, and MO: 58.20%)
    corecore