213 research outputs found

    Classification of String-like Solutions in Dilaton Gravity

    Get PDF
    The static string-like solutions of the Abelian Higgs model coupled to dilaton gravity are analyzed and compared to the non-dilatonic case. Except for a special coupling between the Higgs Lagrangian and the dilaton, the solutions are flux tubes that generate a non-asymptotically flat geometry. Any point in parameter space corresponds to two branches of solutions with two different asymptotic behaviors. Unlike the non-dilatonic case, where one branch is always asymptotically conic, in the present case the asymptotic behavior changes continuously along each branch.Comment: 15 pages, 6 figures. To be published in Phys. Rev.

    Cosmic String Spacetime in Dilaton Gravity and Flat Rotation Curves

    Full text link
    In dilaton gravity theories, we consider a string-like topological defect formed during U(1) gauge symmetry-breaking phase transition in the early Universe, and far from the cosmic string we have vacuum solutions of the generalized Einstein equation. We discuss how they can be related to the flatness of galactic rotation curves.Comment: 9 pages, RevTeX4 fil

    Non-Singular Stationary Global Strings

    Full text link
    A field-theoretical model for non-singular global cosmic strings is presented. The model is a non-linear sigma model with a potential term for a self-gravitating complex scalar field. Non-singular stationary solutions with angular momentum and possibly linear momentum are obtained by assuming an oscillatory dependence of the scalar field on t, phi and z. This dependence has an effect similar to gauging the global U(1) symmetry of the model, which is actually a Kaluza-Klein reduction from four to three spacetime dimensions. The method of analysis can be regarded as an extension of the gravito-electromagnetism formalism beyond the weak field limit. Some D=3 self-dual solutions are also discussed.Comment: 20 pages Latex, 12 PS figures included. Minor corrections. Version to appear in Phys.Rev.
    • …
    corecore