95 research outputs found

    Pionic Degrees of Freedom in Atomic Nuclei and Quasielastic Knockout of Pions by High-Energy Electrons

    Get PDF
    The nonlinear model of pionic condensate in nuclei by G. Preparata can be efficiently verified by investigation of the quasielastic knockout process of pions out of nuclei by high energy electrons. First, a momentum distribution (MD) of the collective pions has a bright maximum at q=0.3 Gev.Second the excitation spectrum of a recoil nucleus is concentrated at low energies E lesser than 1MeV. The results for the pion knockout from mesonic clouds of individual nucleons are absolutely different. The latter results are presented both for pion and rho-meson clouds localized on nucleons.Comment: 13 pages, 3 figure

    Nucleon-nucleon wave function with short-range nodes and high-energy deuteron photodisintegration

    Full text link
    We review a concept of the Moscow potential (MP) of the NNNN interaction. On the basis of this concept we derive by quantum inversion optical partial potentials from the modern partial-wave analysis (PWA) data and deuteron properties. Point-form (PF) relativistic quantum mechanics (RQM) is applied to the two-body deuteron photodisintegration. Calculations of the cross-section angular distributions cover photon energies between 1.1 and 2.5 GeV. Good agreement between our theory and recent experimental data confirms the concept of deep attractive Moscow potential with forbidden SS- and PP-states.Comment: 31 pages, 9 figures. typos, extended formalism, review of the Moscow potential model adde

    Examination of the astrophysical S-factors of the radiative proton capture on 2H, 6Li, 7Li, 12C and 13C

    Full text link
    Astrophysical S-factors of radiative capture reactions on light nuclei have been calculated in a two-cluster potential model, taking into account the separation of orbital states by the use of Young schemes. The local two-body potentials describing the interaction of the clusters were determined by fitting scattering data and properties of bound states. The many-body character of the problem is approximatively accounted for by Pauli forbidden states. An important feature of the approach is the consideration of the dependence of the interaction potential between the clusters on the orbital Young schemes, which determine the permutation symmetry of the nucleon system. Proton capture on 2H, 6Li, 7Li, 12C, and 13C was analyzed in this approach. Experimental data at low energies were described reasonably well when the phase shifts for cluster-cluster scattering, extracted from precise data, were used. This shows that decreasing the experimental error on differential elastic scattering cross sections of light nuclei at astrophysical energies is very important also to allow a more accurate phase shift analysis. A future increase in precision will allow more definite conclusions regarding the reaction mechanisms and astrophysical conditions of thermonuclear reactions.Comment: 40p., 9 fig., 83 ref. arXiv admin note: substantial text overlap with arXiv:1005.1794, arXiv:1112.1760, arXiv:1005.198

    The Nucleon-Nucleon Interaction in a Chiral Constituent Quark Model

    Get PDF
    We study the short-range nucleon-nucleon interaction in a chiral constituent quark model by diagonalizing a Hamiltonian comprising a linear confinement and a Goldstone boson exchange interaction between quarks. The six-quark harmonic oscillator basis contains up to two excitation quanta. We show that the highly dominant configuration is s4p2[42]O[51]FS>\mid s^4p^2[42]_O [51]_{FS}> due to its specific flavour-spin symmetry. Using the Born-Oppenheimer approximation we find a strong effective repulsion at zero separation between nucleons in both 3S1^3S_1 and 1S0^1S_0 channels. The symmetry structure of the highly dominant configuration implies the existence of a node in the S-wave relative motion wave function at short distances. The amplitude of the oscillation of the wave function at short range will be however strongly suppressed. We discuss the mechanism leading to the effective short-range repulsion within the chiral constituent quark model as compared to that related with the one-gluon exchange interaction.Comment: 31 pages, LaTe

    Moscow-type NN-potentials and three-nucleon bound states

    Get PDF
    A detailed description of Moscow-type (M-type) potential models for the NN interaction is given. The microscopic foundation of these models, which appear as a consequence of the composite quark structure of nucleons, is discussed. M-type models are shown to arise naturally in a coupled channel approach when compound or bag-like six-quark states, strongly coupled to the NN channel, are eliminated from the complete multiquark wave function. The role of the deep-lying bound states that appear in these models is elucidated. By introducing additional conditions of orthogonality to these compound six-quark states, a continuous series of almost on-shell equivalent nonlocal interaction models, characterized by a strong reduction or full absence of a local repulsive core (M-type models), is generated. The predictions of these interaction models for 3N systems are analyzed in detail. It is shown that M-type models give, under certain conditions, a stronger binding of the 3N system than the original phase-equivalent model with nodeless wave functions. An analysis of the 3N system with the new versions of the Moscow NN potential describing also the higher even partial waves is presented. Large deviations from conventional NN force models are found for the momentum distribution in the high momentum region. In particular, the Coulomb displacement energy for nuclei ^3He - ^3H displays a promising agreement with experiment when the ^3H binding energy is extrapolated to the experimental value.Comment: 23 pages Latex, 9 figures, to appear in Phys.Rev.

    Role of the Nuclear and Electromagnetic Interactions in the Coherent Dissociation of the Relativistic 7^7Li Nucleus into the 3^3H + 4^4He Channel

    Full text link
    The differential cross section in the transverse momentum QQ and a total cross section of (31±4)(31\pm4) mb for the coherent dissociation of a 3-A-GeV/cc 7^7Li nucleus through the 3^3H+4+^4He channel have been measured on emulsion nuclei. The observed QQ dependence of the cross section is explained by the predominant supposition of the nuclear diffraction patterns on light (C, N, O) and heavy (Br, Ag) emulsion nuclei. The contributions to the cross section from nuclear diffraction (Q400Q\le400 MeV/cc) and Coulomb (Q50(Q\le50 MeV/cc) dissociations are calculated to be 40.7 and 4 mb, respectively.Comment: ISSN 0021-3640, Pleiades Publishing, Ltd., 200

    Multi-channel phase-equivalent transformation and supersymmetry

    Get PDF
    Phase-equivalent transformation of local interaction is generalized to the multi-channel case. Generally, the transformation does not change the number of the bound states in the system and their energies. However, with a special choice of the parameters, the transformation removes one of the bound states and is equivalent to the multi-channel supersymmetry transformation recently suggested by Sparenberg and Baye. Using the transformation, it is also possible to add a bound state to the discrete spectrum of the system at a given energy E<0E<0 if the angular momentum at least in one of the coupled channels l2l\ge 2.Comment: 9 pages, revtex; to be published in Phys. At. Nucl. (Oct. 2000

    Astrophysical S-factor for the radiative capture reaction 13C(p,g)14N

    Full text link
    The phase shift analysis, done on the basis of the known measurements of the differential cross-sections of the p13C elastic scattering at the energy range 250-750 keV, shows that it is enough to take into account only 3S1 wave in the considered energy region. The potential for the triplet 3S1 state in p13C system at the resonance energy 0.55 MeV corresponding to quantum numbers JpT = 1-1 as well as the potential for the 3P1 bound state of 14N were constructed on the basis of the obtained scattering phase shifts. The possibility to describe the experimental data of the astrophysical S-factor of the p13C radiative capture at the energies 0.03-0.8 MeV was considered within the potential cluster model with the forbidden states. It was shown that we properly succeed in explanation of the energy behavior of the astrophysical S-factor for the p13C radiative capture at the resonance energy range 0.55 MeV (laboratory system).Comment: 8 p., 2 fi

    Nucleon-Nucleon Optical Model for Energies to 3 GeV

    Get PDF
    Several nucleon-nucleon potentials, Paris, Nijmegen, Argonne, and those derived by quantum inversion, which describe the NN interaction for T-lab below 300$ MeV are extended in their range of application as NN optical models. Extensions are made in r-space using complex separable potentials definable with a wide range of form factor options including those of boundary condition models. We use the latest phase shift analyses SP00 (FA00, WI00) of Arndt et al. from 300 MeV to 3 GeV to determine these extensions. The imaginary parts of the optical model interactions account for loss of flux into direct or resonant production processes. The optical potential approach is of particular value as it permits one to visualize fusion, and subsequent fission, of nucleons when T-lab above 2 GeV. We do so by calculating the scattering wave functions to specify the energy and radial dependences of flux losses and of probability distributions. Furthermore, half-off the energy shell t-matrices are presented as they are readily deduced with this approach. Such t-matrices are required for studies of few- and many-body nuclear reactions.Comment: Latex, 40 postscript pages including 17 figure
    corecore